Equivariant Schubert calculus of Coxeter groups
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equivariant extension for Hiller's Schubert calculus on the coinvariant ring of a finite Coxeter group.
@article{TRSPY_2011_275_a16,
     author = {Shizuo Kaji},
     title = {Equivariant {Schubert} calculus of {Coxeter} groups},
     journal = {Informatics and Automation},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/}
}
TY  - JOUR
AU  - Shizuo Kaji
TI  - Equivariant Schubert calculus of Coxeter groups
JO  - Informatics and Automation
PY  - 2011
SP  - 250
EP  - 261
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/
LA  - en
ID  - TRSPY_2011_275_a16
ER  - 
%0 Journal Article
%A Shizuo Kaji
%T Equivariant Schubert calculus of Coxeter groups
%J Informatics and Automation
%D 2011
%P 250-261
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/
%G en
%F TRSPY_2011_275_a16
Shizuo Kaji. Equivariant Schubert calculus of Coxeter groups. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/