Equivariant Schubert calculus of Coxeter groups
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equivariant extension for Hiller's Schubert calculus on the coinvariant ring of a finite Coxeter group.
@article{TRSPY_2011_275_a16,
     author = {Shizuo Kaji},
     title = {Equivariant {Schubert} calculus of {Coxeter} groups},
     journal = {Informatics and Automation},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/}
}
TY  - JOUR
AU  - Shizuo Kaji
TI  - Equivariant Schubert calculus of Coxeter groups
JO  - Informatics and Automation
PY  - 2011
SP  - 250
EP  - 261
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/
LA  - en
ID  - TRSPY_2011_275_a16
ER  - 
%0 Journal Article
%A Shizuo Kaji
%T Equivariant Schubert calculus of Coxeter groups
%J Informatics and Automation
%D 2011
%P 250-261
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/
%G en
%F TRSPY_2011_275_a16
Shizuo Kaji. Equivariant Schubert calculus of Coxeter groups. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 250-261. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a16/

[1] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969 | MR | Zbl

[2] Bernshtein I.N., Gelfand I.M., Gelfand S.I., “Kletki Shuberta i kogomologii prostranstv $G/P$”, UMN, 28:3 (1973), 3–26

[3] Billey S.C., “Kostant polynomials and the cohomology ring for $G/B$”, Duke Math. J., 96:1 (1999), 205–224 | DOI | MR | Zbl

[4] Borel A., Linear algebraic groups, Grad. Texts Math., 126, 2nd ed., Springer, New York, 1991 | DOI | MR | Zbl

[5] Borel A., “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math. Ser. 2, 57 (1953), 115–207 | DOI | MR | Zbl

[6] Bourbaki N., Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 1981 | MR

[7] Demazure M., “Invariants symétriques entiers des groupes de Weyl et torsion”, Invent. math., 21 (1973), 287–301 | DOI | MR | Zbl

[8] Fulton W., Pragacz P., Schubert varieties and degeneracy loci, (Lect. Notes Math.; V. 1689)., 1689, Springer, Berlin, 1998 | MR | Zbl

[9] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. math., 131 (1998), 25–83 | DOI | MR | Zbl

[10] Hiller H., Geometry of Coxeter groups, Res. Notes Math., 54, Pitman Adv. Publ. Program, Boston, 1982 | MR | Zbl

[11] Humphreys J.E., Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[12] Kaji S., “Schubert calculus, seen from torus equivariant topology”, Trends Math. New Ser. Inf. Cent. Math. Sci., 12:1 (2010), 71–90

[13] Knutson A., A Schubert calculus recurrence from the noncomplex $W$-action on $G/B$, E-print, 2003, arXiv: math/0306304v1 [math.CO]

[14] Kresch A., Tamvakis H., “Double Schubert polynomials and degeneracy loci for the classical groups”, Ann. Inst. Fourier, 52:6 (2002), 1681–1727 | DOI | MR | Zbl

[15] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Prog. Math., 204, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[16] Lascoux A., Schützenberger M.-P., “Polynômes de Schubert”, C. r. Acad. sci. Paris. Sér. 1: Math., 294:13 (1982), 447–450 | MR | Zbl