Bounded homotopy theory and the $K$-theory of weighted complexes
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 210-226

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a bounding class $\mathcal B$, we construct a bounded refinement $\mathcal BK(-)$ of Quillen's $K$-theory functor from rings to spaces. As defined, $\mathcal BK(-)$ is a functor from weighted rings to spaces, and is equipped with a comparison map $\mathcal BK\to K$ induced by “forgetting control”. In contrast to the situation with $\mathcal B$-bounded cohomology, there is a functorial splitting $\mathcal BK(-)\simeq K(-)\times\mathcal BK^\mathrm{rel}(-)$ where $\mathcal BK^\mathrm{rel}(-)$ is the homotopy fiber of the comparison map.
@article{TRSPY_2011_275_a13,
     author = {J. Fowler and C. Ogle},
     title = {Bounded homotopy theory and the $K$-theory of weighted complexes},
     journal = {Informatics and Automation},
     pages = {210--226},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a13/}
}
TY  - JOUR
AU  - J. Fowler
AU  - C. Ogle
TI  - Bounded homotopy theory and the $K$-theory of weighted complexes
JO  - Informatics and Automation
PY  - 2011
SP  - 210
EP  - 226
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a13/
LA  - en
ID  - TRSPY_2011_275_a13
ER  - 
%0 Journal Article
%A J. Fowler
%A C. Ogle
%T Bounded homotopy theory and the $K$-theory of weighted complexes
%J Informatics and Automation
%D 2011
%P 210-226
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a13/
%G en
%F TRSPY_2011_275_a13
J. Fowler; C. Ogle. Bounded homotopy theory and the $K$-theory of weighted complexes. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 210-226. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a13/