Combining globally rigid frameworks
Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 202-209

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown how to combine two generically globally rigid bar frameworks in $d$-space to get another generically globally rigid framework. The construction is to identify $d+1$ vertices from each of the frameworks and erase one of the edges that they have in common.
@article{TRSPY_2011_275_a12,
     author = {R. Connelly},
     title = {Combining globally rigid frameworks},
     journal = {Informatics and Automation},
     pages = {202--209},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a12/}
}
TY  - JOUR
AU  - R. Connelly
TI  - Combining globally rigid frameworks
JO  - Informatics and Automation
PY  - 2011
SP  - 202
EP  - 209
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a12/
LA  - en
ID  - TRSPY_2011_275_a12
ER  - 
%0 Journal Article
%A R. Connelly
%T Combining globally rigid frameworks
%J Informatics and Automation
%D 2011
%P 202-209
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a12/
%G en
%F TRSPY_2011_275_a12
R. Connelly. Combining globally rigid frameworks. Informatics and Automation, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 202-209. http://geodesic.mathdoc.fr/item/TRSPY_2011_275_a12/