Filling minimality of Finslerian 2-discs
Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 192-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every Riemannian metric on the 2-disc such that all its geodesics are minimal is a minimal filling of its boundary (within the class of fillings homeomorphic to the disc). This improves an earlier result of the author by removing the assumption that the boundary is convex. More generally, we prove this result for Finsler metrics with area defined as the two-dimensional Holmes–Thompson volume. This implies a generalization of Pu's isosystolic inequality to Finsler metrics, both for the Holmes–Thompson and Busemann definitions of the Finsler area.
@article{TRSPY_2011_273_a6,
     author = {S. V. Ivanov},
     title = {Filling minimality of {Finslerian} 2-discs},
     journal = {Informatics and Automation},
     pages = {192--206},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a6/}
}
TY  - JOUR
AU  - S. V. Ivanov
TI  - Filling minimality of Finslerian 2-discs
JO  - Informatics and Automation
PY  - 2011
SP  - 192
EP  - 206
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a6/
LA  - en
ID  - TRSPY_2011_273_a6
ER  - 
%0 Journal Article
%A S. V. Ivanov
%T Filling minimality of Finslerian 2-discs
%J Informatics and Automation
%D 2011
%P 192-206
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a6/
%G en
%F TRSPY_2011_273_a6
S. V. Ivanov. Filling minimality of Finslerian 2-discs. Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 192-206. http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a6/

[1] Álvarez-Paiva J.C., Thompson A.C., “Volumes on normed and Finsler spaces”, A sampler of Riemann–Finsler geometry, eds. Ed. by D. Bao, R.L. Bryant, S.-S. Chern, Z. Shen, Cambridge Univ. Press, Cambridge, 2004, 1–48 | MR | Zbl

[2] Burago D., Ivanov S., “On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume”, Ann. Math. Ser. 2, 156:3 (2002), 891–914 | DOI | MR | Zbl

[3] Burago D., Ivanov S., “Boundary rigidity and filling volume minimality of metrics close to a flat one”, Ann. Math. Ser. 2, 171:2 (2010), 1183–1211 | DOI | MR | Zbl

[4] Busemann H., “Intrinsic area”, Ann. Math. Ser. 2, 48 (1947), 234–267 | DOI | MR

[5] Croke C.B., “Rigidity and the distance between boundary points”, J. Diff. Geom., 33 (1991), 445–464 | MR | Zbl

[6] Croke C.B., Kleiner B., “On tori without conjugate points”, Invent. math., 120:2 (1995), 241–257 | DOI | MR | Zbl

[7] Durán C.E., “A volume comparison theorem for Finsler manifolds”, Proc. Amer. Math. Soc., 126 (1998), 3079–3082 | DOI | MR | Zbl

[8] Gromov M., “Filling Riemannian manifolds”, J. Diff. Geom., 18 (1983), 1–147 | MR | Zbl

[9] Holmes R.D., Thompson A.C., “$N$-dimensional area and content in Minkowski spaces”, Pac. J. Math., 85:1 (1979), 77–110 | DOI | MR

[10] Ivanov S.V., “O dvumernykh minimalnykh zapolneniyakh”, Algebra i analiz, 13:1 (2001), 26–38 | MR

[11] Ivanov S.V., “Ob'emy i ploschadi lipshitsevykh metrik”, Algebra i analiz, 20:3 (2008), 74–111 | MR

[12] Michel R., “Sur la rigidité imposeée par la longueur des géodésiques”, Invent. math., 65 (1981), 71–83 | DOI | MR | Zbl

[13] Pestov L., Uhlmann G., “Two dimensional compact simple Riemannian manifolds are boundary distance rigid”, Ann. Math. Ser. 2, 161:2 (2005), 1093–1110 | DOI | MR | Zbl

[14] Pu P.M., “Some inequalities in certain nonorientable Riemannian manifolds”, Pac. J. Math., 2 (1952), 55–71 | DOI | MR | Zbl

[15] Shen Z., Lectures on Finsler geometry, World Sci., Singapore, 2001 | MR

[16] Thompson A.C., Minkowski geometry, Encycl. Math and Appl. 63, 63, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl