Macroscopic dimension and essential manifolds
Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 41-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Gromov asked whether the macroscopic dimension of rationally essential $n$-dimensional manifolds equals $n$. We show that the answer depends only on the corresponding group homology class and give an affirmative answer for certain classes. In particular, the answer is positive for manifolds with amenable fundamental groups.
@article{TRSPY_2011_273_a3,
     author = {A. N. Dranishnikov},
     title = {Macroscopic dimension and essential manifolds},
     journal = {Informatics and Automation},
     pages = {41--53},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a3/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - Macroscopic dimension and essential manifolds
JO  - Informatics and Automation
PY  - 2011
SP  - 41
EP  - 53
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a3/
LA  - en
ID  - TRSPY_2011_273_a3
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T Macroscopic dimension and essential manifolds
%J Informatics and Automation
%D 2011
%P 41-53
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a3/
%G en
%F TRSPY_2011_273_a3
A. N. Dranishnikov. Macroscopic dimension and essential manifolds. Informatics and Automation, Modern problems of mathematics, Tome 273 (2011), pp. 41-53. http://geodesic.mathdoc.fr/item/TRSPY_2011_273_a3/

[1] Block J., Weinberger S., “Aperiodic tilings, positive scalar curvature, and amenability of spaces”, J. Amer. Math. Soc., 5:4 (1992), 907–918 | DOI | MR | Zbl

[2] Bolotov D., Dranishnikov A., “On Gromov's scalar curvature conjecture”, Proc. Amer. Math. Soc., 138:4 (2010), 1517–1524, arXiv: 0901.4503v1 [math.GT] | DOI | MR | Zbl

[3] Brown K.S., Cohomology of groups, Grad. Texts Math., 87, Springer, New York; Heidelberg; Berlin, 1982 | DOI | MR

[4] Brunnbauer M., Hanke B., Large and small group homology, E-print, 2009, arXiv: 0902.0869 [math.GT] | MR | Zbl

[5] Dranishnikov A.N., Rudyak Yu.B., “On the Berstein–Svarc theorem in dimension 2”, Math. Proc. Cambridge Philos. Soc., 146 (2009), 407–413 | DOI | MR | Zbl

[6] Gong G., Yu G., “Volume growth and positive scalar curvature”, Geom. and Funct. Anal., 10 (2000), 821–828 | DOI | MR | Zbl

[7] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional analysis on the eve of the 21st century, v. 2, Birkhäuser, Boston, MA, 1996, 1–213 | MR | Zbl

[8] Gromov M., “Filling Riemannian manifolds”, J. Diff. Geom., 18 (1983), 1–147 | MR | Zbl

[9] Gromov M., “Large Riemannian manifolds”, Curvature and topology of Riemannian manifolds, Lect. Notes Math., 1201, Springer, Berlin, 1986, 108–121 | DOI | MR

[10] Gromov M., Lawson H.B., Jr., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Publ. Math. IHES, 58 (1983), 83–196 | DOI | MR | Zbl

[11] Shvarts A.S., “Rod rassloennogo prostranstva”, Tr. Mosk. mat. o-va, 10, 1961, 217–272 ; 11, 1962, 99–126 ; Švarc A.S., “The genus of a fiber space”, Amer. Math. Soc. Transl. Ser. 2, 55, 1966, 49–140 | MR | Zbl