Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_272_a8, author = {D. Ebert and A. V. Tyukov and V. Ch. Zhukovsky}, title = {Dynamical symmetry breaking in hyperbolic {4D} spacetime and in extra dimensions}, journal = {Informatics and Automation}, pages = {97--116}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a8/} }
TY - JOUR AU - D. Ebert AU - A. V. Tyukov AU - V. Ch. Zhukovsky TI - Dynamical symmetry breaking in hyperbolic 4D spacetime and in extra dimensions JO - Informatics and Automation PY - 2011 SP - 97 EP - 116 VL - 272 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a8/ LA - en ID - TRSPY_2011_272_a8 ER -
D. Ebert; A. V. Tyukov; V. Ch. Zhukovsky. Dynamical symmetry breaking in hyperbolic 4D spacetime and in extra dimensions. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 97-116. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a8/
[1] Nambu Y., Jona-Lasinio G., “Dynamical model of elementary particles based on an analogy with superconductivity. I”, Phys. Rev., 122 (1961), 345 | DOI
[2] Nambu Y., Jona-Lasinio G., “Dynamical model of elementary particles based on an analogy with superconductivity. II”, Phys. Rev., 124 (1961), 246 | DOI
[3] Vaks V.G., Larkin A.I., “O primenenii metodov teorii sverkhprovodimosti k voprosu o massakh elementarnykh chastits”, ZhETF, 40:1 (1961), 282 | Zbl
[4] Volkov M.K., Ebert D., “Chetyrekhkvarkovoe vzaimodeistvie kak obschii dinamicheskii istochnik modeli vektornoi dominantnosti i $\sigma $-modeli”, Yad. fiz., 36 (1982), 1265
[5] Ebert D., Volkov M.K., “Composite-meson model with vector dominance based on $U(2)$ invariant four-quark interactions”, Ztschr. Phys. C, 16 (1983), 205 | DOI
[6] Ebert D., Reinhardt H., “Effective chiral hadron Lagrangian with anomalies and Skyrme terms from quark flavour dynamics”, Nucl. Phys. B, 271 (1986), 188 | DOI
[7] Ebert D., Reinhardt H., Volkov M.K., “Effective hadron theory of QCD”, Prog. Part. and Nucl. Phys., 33 (1994), 1 | DOI
[8] Hatsuda T., Kunihiro T., “QCD phenomenology based on a chiral effective Lagrangian”, Phys. Rep., 247 (1994), 221 | DOI
[9] Ebert D., Kaschluhn L., Kastelewicz G., “Effective meson–diquark Lagrangian and mass formulas from the Nambu–Jona-Lasinio model”, Phys. Lett. B, 264 (1991), 420 | DOI
[10] Vogl U., “Diquarks from a $U(3)_L\times U(3)_R$ invariant quark Lagrangian”, Ztschr. Phys. A, 337 (1990), 191
[11] Vogl U., Weise W., “The Nambu and Jona-Lasinio model: Its implications for hadrons and nuclei”, Prog. Part. and Nucl. Phys., 27 (1991), 195 | DOI
[12] Barrois B.C., “Superconducting quark matter”, Nucl. Phys. B, 129 (1977), 390 | DOI
[13] Frautschi S.C., “Asymptotic freedom and color superconductivity in dense quark matter”, Hadronic matter at extreme energy density, Proc. Workshop, Erice (Italy), 1978, Plenum Press, New York, 1980, 18–27
[14] Bailin D., Love A., “Superfluidity and superconductivity in relativistic fermion systems”, Phys. Rep., 107 (1984), 325 | DOI
[15] Alford M., Rajagopal K., Wilczek F., “Color-flavor locking and chiral symmetry breaking in high density QCD”, Nucl. Phys. B, 537 (1999), 443 | DOI
[16] Langfeld K., Rho M., “Quark condensation, induced symmetry breaking and color superconductivity at high density”, Nucl. Phys. A, 660 (1999), 475 | DOI
[17] Berges J., Rajagopal K., “Color superconductivity and chiral symmetry restoration at non-zero baryon density and temperature”, Nucl. Phys. B, 538 (1999), 215 | DOI
[18] Schwarz T.M., Klevansky S.P., Papp G., “Phase diagram and bulk thermodynamical quantities in the Nambu–Jona-Lasinio model at finite temperature and density”, Phys. Rev. C, 60 (1999), 055205 | DOI
[19] Alford M., “Color-superconducting quark matter”, Ann. Rev. Nucl. and Part. Sci., 51 (2001), 131 | DOI
[20] Kerbikov B.O., Color superconducting state of quarks, E-print, 2001, arXiv: hep-ph/0110197
[21] Alford M.G., Schmitt A., Rajagopal K., Schäfer T., “Color superconductivity in dense quark matter”, Rev. Mod. Phys., 80 (2008), 1455 | DOI
[22] Shovkovy I.A., “Two lectures on color superconductivity”, Found. Phys., 35 (2005), 1309 | DOI | MR | Zbl
[23] Klimenko K.G., “Trekhmernaya model Grossa–Neve pri nenulevoi temperature i vo vneshnem magnitnom pole”, TMF, 90:1 (1992), 3 | MR
[24] Gusynin V.P., Miransky V.A., Shovkovy I.A., “Catalysis of dynamical flavor symmetry breaking by a magnetic field in $2+1$ dimensions”, Phys. Rev. Lett., 73 (1994), 3499 | DOI
[25] Gusynin V.P., Miransky V.A., Shovkovy I., “Dynamical flavor symmetry breaking by a magnetic field in $2+1$ dimensions”, Phys. Rev. D, 52 (1995), 4718 | DOI
[26] Gusynin V.P., Miransky V.A., Shovkovy I.A., “Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in $3+1$ dimensions”, Phys. Lett. B, 349 (1995), 477 | DOI
[27] Gusynin V.P., Miransky V.A., Shovkovy I.A., “Dynamical chiral symmetry breaking by a magnetic field in QED”, Phys. Rev. D, 52 (1995), 4747 | DOI
[28] Gusynin V.P., Miransky V.A., Shovkovy I.A., “Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field”, Nucl. Phys. B, 462 (1996), 249 | DOI
[29] Klimenko K.G., Magnitsky B.V., Vshivtsev A.S., “Three-dimensional $(\psi \bar \psi )^2$ model with an external non-Abelian field, temperature and a chemical potential”, Nuovo Cimento A, 107 (1994), 439 | DOI
[30] Ebert D., Zhukovsky V.Ch., “Chiral phase transitions in strong background fields at finite temperature and dimensional reduction”, Mod. Phys. Lett. A, 12 (1997), 2567 | DOI | Zbl
[31] Ebert D., Klimenko K.G., Toki H., Zhukovsky V.Ch., “Chromomagnetic catalysis of color superconductivity and dimensional reduction”, Prog. Theor. Phys., 106 (2001), 835 | DOI | Zbl
[32] Ebert D., Khudyakov V.V., Zhukovsky V.Ch., Klimenko K.G., “Influence of an external chromomagnetic field on color superconductivity”, Phys. Rev. D, 65 (2002), 054024 | DOI | MR
[33] Inagaki T., Muta T., Odintsov S.D., “Dynamical symmetry breaking in curved spacetime: Four-fermion interactions”, Prog. Theor. Phys. Suppl., 127 (1997), 93 | DOI
[34] Gorbar E.V., “Dynamical symmetry breaking in spaces with a constant negative curvature”, Phys. Rev. D, 61 (1999), 024013 | DOI
[35] Gorbar E.V., “On effective dimensional reduction in hyperbolic spaces”, Ukr. J. Phys., 54:6 (2009), 541
[36] Gorbar E.V., Gusynin V.P., “Gap generation for Dirac fermions on Lobachevsky plane in a magnetic field”, Ann. Phys., 323 (2008), 2132 | DOI | Zbl
[37] Ebert D., Tyukov A.V., Zhukovsky V.Ch., “Gravitational catalysis of chiral and color symmetry breaking of quark matter in hyperbolic space”, Phys. Rev. D, 80 (2009), 085019 | DOI
[38] Antoniadis I., “A possible new dimension at a few TeV”, Phys. Lett. B, 246 (1990), 377 | DOI | MR
[39] Antoniadis I., Benakli K., Quiros M., “Production of Kaluza–Klein states at future colliders”, Phys. Lett. B, 331 (1994), 313 | DOI | MR
[40] Arkani-Hamed N., Dimopoulos S., Dvali G., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429 (1998), 263 | DOI | MR
[41] Arkani-Hamed N., Dimopoulos S., Dvali G., “Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”, Phys. Rev. D, 59 (1999), 086004 | DOI
[42] Antoniadis I., Arkani-Hamed N., Dimopoulos S., Dvali G., “New dimensions at a millimeter to a Fermi and superstrings at a TeV”, Phys. Lett. B, 436 (1998), 257 | DOI
[43] Abe H., Miguchi H., Muta T., “Dynamical fermion masses under the influence of Kaluza–Klein fermions in extra dimensions”, Mod. Phys. Lett. A, 15 (2000), 445 | DOI
[44] Chang S., Hisano J., Nakano H., Okada N., Yamaguchi M., “Bulk standard model in the Randall–Sundrum background”, Phys. Rev. D, 62 (2000), 084025 | DOI | MR
[45] Han T., Lykken J.D., Zhang R.-J., “On Kaluza–Klein states from large extra dimensions”, Phys. Rev. D, 59 (1999), 105006 | DOI | MR
[46] Dobrescu B.A., “Electroweak symmetry breaking as a consequence of compact dimensions”, Phys. Lett. B, 461 (1999), 99 | DOI
[47] Cheng H.-C., Dobrescu B.A., Hill C.T., “Electroweak symmetry breaking and extra dimensions”, Nucl. Phys. B, 589 (2000), 249 | DOI
[48] Kobakhidze A.B., “Top-quark mass in the minimal top-condensation model with extra dimensions”, Yad. fiz., 64:5 (2001), 1010
[49] Manton N.S., “A new six-dimensional approach to the Weinberg–Salam model”, Nucl. Phys. B, 158 (1979), 141 | DOI | MR
[50] Fairlie D.B., “Higgs fields and the determination of the Weinberg angle”, Phys. Lett. B, 82 (1979), 97 | DOI
[51] Fairlie D.B., “Two consistent calculations of the Weinberg angle”, J. Phys. G, 5 (1979), L55–L58 | DOI
[52] Forgács P., Manton N.S., “Space–time symmetries in gauge theories”, Commun. Math. Phys., 72 (1980), 15 | DOI | MR
[53] Randjbar-Daemi S., Salam A., Strathdee J.A., “Spontaneous compactification in six-dimensional Einstein–Maxwell theory”, Nucl. Phys. B, 214 (1983), 491 | DOI | MR
[54] Sundrum R., To the fifth dimension and back, E-print, 2005, arXiv: hep-th/0508134
[55] Hosotani Y., “Dynamical mass generation by compact extra dimensions”, Phys. Lett. B, 126 (1983), 309 | DOI
[56] Hosotani Y., “Dynamics of non-integrable phases and gauge symmetry breaking”, Ann. Phys., 190 (1989), 233 | DOI | MR
[57] Parker L., Toms D.J., “Renormalization-group analysis of grand unified theories in curved spacetime”, Phys. Rev. D., 29 (1984), 1584 | DOI
[58] Brill D.R., Wheeler J.A., “Interaction of neutrinos and gravitational fields”, Rev. Mod. Phys., 29 (1957), 465 | DOI | MR | Zbl
[59] Dowker J.S., Apps J.S., Kirsten K., Bordag M., “Spectral invariants for the Dirac equation on the $d$-ball with various boundary conditions”, Class. and Quantum Grav., 13 (1996), 2911 | DOI | MR | Zbl
[60] Camporesi R., Higuchi A., “On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces”, J. Geom. and Phys., 20 (1996), 1 | DOI | MR | Zbl
[61] Ebert D., Tyukov A.V., Zhukovsky V.Ch., “Dynamical breaking and restoration of chiral and color symmetries in the static Einstein universe”, Phys. Rev. D, 76 (2007), 064029 | DOI | MR
[62] Bytsenko A.A., Cognola G., Vanzo L., Zerbini S., “Quantum fields and extended objects in space–times with constant curvature spatial section”, Phys. Rep., 266 (1996), 1 | DOI | MR
[63] Candelas P., Weinberg S., “Calculation of gauge couplings and compact circumferences from self-consistent dimensional reduction”, Nucl. Phys. B, 237 (1984), 397 | DOI | MR