Deconfinement phase transition in mirror of symmetries
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 84-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We argue that the deconfinement phase transition in Yang–Mills theories can be viewed as a change of effective non-perturbative degrees of freedom and of symmetries of their interactions. In short, the strings in four dimensions (4d) at temperatures below the critical temperature $T_\mathrm c$ are replaced by particles, or field theories in 3d at $T>T_\mathrm c$. The picture emerges within various approaches based on dual models, lattice data and effective field theoretic models. We concentrate mostly on the lattice data, or the language of quantum geometry.
@article{TRSPY_2011_272_a7,
     author = {M. N. Chernodub and A. Nakamura and V. I. Zakharov},
     title = {Deconfinement phase transition in mirror of symmetries},
     journal = {Informatics and Automation},
     pages = {84--96},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/}
}
TY  - JOUR
AU  - M. N. Chernodub
AU  - A. Nakamura
AU  - V. I. Zakharov
TI  - Deconfinement phase transition in mirror of symmetries
JO  - Informatics and Automation
PY  - 2011
SP  - 84
EP  - 96
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/
LA  - en
ID  - TRSPY_2011_272_a7
ER  - 
%0 Journal Article
%A M. N. Chernodub
%A A. Nakamura
%A V. I. Zakharov
%T Deconfinement phase transition in mirror of symmetries
%J Informatics and Automation
%D 2011
%P 84-96
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/
%G en
%F TRSPY_2011_272_a7
M. N. Chernodub; A. Nakamura; V. I. Zakharov. Deconfinement phase transition in mirror of symmetries. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 84-96. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/

[1] Mandelstam S., “Vortices and quark confinement in non-Abelian gauge theories”, Phys. Rep., 23 (1976), 245 | DOI

[2] 't Hooft G., “Gauge theories with unified weak, electromagnetic and strong interactions”, High energy physics, eds. A. Zichichi, Edit. Compositori, Bologna, 1976, 1225–1249

[3] Greensite J., “The confinement problem in lattice gauge theory”, Prog. Part. and Nucl. Phys., 51 (2003), 1, arXiv: hep-lat/0301023 | DOI

[4] Aharony O., Gubser S.S., Maldacena J., Ooguri H., Oz Y., “Large $N$ field theories, string theory and gravity”, Phys. Rep., 323 (2000), 183, arXiv: hep-th/9905111 | DOI | MR

[5] Witten E., “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys., 2 (1998), 505, arXiv: hep-th/9803131 | MR | Zbl

[6] Sakai T., Sugimoto S., “Low energy hadron physics in holographic QCD”, Prog. Theor. Phys., 113 (2005), 843, arXiv: hep-th/0412141 | DOI | MR | Zbl

[7] Aharony O., Sonnenschein J., Yankielowicz S., “A holographic model of deconfinement and chiral symmetry restoration”, Ann. Phys., 322 (2007), 1420, arXiv: hep-th/0604161 | DOI | MR | Zbl

[8] Kharzeev D.E., “Hot and dense matter: from RHIC to LHC. Theoretical overview”, Nucl. Phys. A, 827 (2009), 118, arXiv: 0902.2749 [hep-ph] | DOI

[9] Gyulassy M., McLerran L., “New forms of QCD matter discovered at RHIC”, Nucl. Phys. A, 750 (2005), 30, arXiv: nucl-th/0405013 | DOI

[10] Shuryak E.V., “What RHIC experiments and theory tell us about properties of quark–gluon plasma?”, Nucl. Phys. A, 750 (2005), 64, arXiv: hep-ph/0405066 | DOI

[11] Sathiapalan B., “Vortices on the string world sheet and constraints on toral compactification”, Phys. Rev. D, 35 (1987), 3277 | DOI

[12] Kogan Ya.I., “Vikhri na mirovom liste struny i kriticheskaya dinamika”, Pisma v ZhETF, 45:12 (1987), 556 | MR

[13] Atick J.J., Witten E., “The Hagedorn transition and the number of degrees of freedom of string theory”, Nucl. Phys. B, 310 (1988), 291 | DOI | MR

[14] Gorsky A.S., Zakharov V.I., Zhitnitsky A.R., “Classification of QCD defects via holography”, Phys. Rev. D, 79 (2009), 106003, arXiv: 0902.1842 [hep-ph] | DOI | MR

[15] Bergman O., Lifschytz G., “Holographic $\mathrm U(1)_A$ and string creation”, J. High Energy Phys., 2007, no. 4, 043, arXiv: hep-th/0612289 | DOI | MR

[16] Polyakov A.M., Gauge fields and strings, Harwood Acad. Publ., Chur, 1987 | MR

[17] Ambjorn J., Quantization of geometry, E-print, 1994, arXiv: hep-th/9411179 | MR

[18] Chernodub M.N., Zakharov V.I., “Magnetic component of Yang–Mills plasma”, Phys. Rev. Lett., 98 (2007), 082002, arXiv: hep-ph/0611228 | DOI

[19] D'Alessandro A., D'Elia M., “Magnetic monopoles in the high temperature phase of Yang–Mills theories”, Nucl. Phys. B, 799 (2008), 241, arXiv: 0711.1266 [hep-lat] | DOI

[20] Liao J., Shuryak E., “Strongly coupled plasma with electric and magnetic charges”, Phys. Rev. C, 75 (2007), 054907, arXiv: hep-ph/0611131 | DOI

[21] Liao J., Shuryak E., “The magnetic component of quark–gluon plasma is also a liquid”, Phys. Rev. Lett., 101 (2008), 162302, arXiv: 0804.0255 [hep-ph] | DOI

[22] D'Alessandro A., D'Elia M., Shuryak E.V., “Thermal monopole condensation and confinement in finite temperature Yang–Mills theories”, Phys. Rev. D, 81 (2010), 094501, arXiv: 1002.4161 [hep-lat] | DOI

[23] Polyakov A.M., “Thermal properties of gauge fields and quark liberation”, Phys. Lett. B, 72 (1978), 477 | DOI | MR

[24] Zakharov V.I., “From confining fields on the lattice to higher dimensions in the continuum”, Braz. J. Phys., 37 (2007), 165, arXiv: hep-ph/0612342 | DOI

[25] Chernodub M.N., Zakharov V.I., “Towards understanding structure of the monopole clusters”, Nucl. Phys. B, 669 (2003), 233, arXiv: hep-th/0211267 | DOI | Zbl

[26] Bornyakov V.G., Boyko P.Yu., Polikarpov M.I., Zakharov V.I., “Monopole clusters at short and large distances”, Nucl. Phys. B, 672 (2003), 222, arXiv: hep-lat/0305021 | DOI | Zbl

[27] Ejiri S., Kitahara S., Matsubara Y., Suzuki T., “String tension and monopoles in $T\neq 0$ $SU(2)$ QCD”, Phys. Lett. B, 343 (1995), 304, arXiv: hep-lat/9407022 | DOI

[28] Chernodub M.N., Polikarpov M.I., Veselov A.I., Zubkov M.A., “Aharonov–Bohm effect, center monopoles and center vortices in $SU(2)$ lattice gluodynamics”, Nucl. Phys. B. Proc. Suppl., 73 (1999), 575, arXiv: hep-lat/9809158 | DOI | Zbl

[29] Bertle R., Faber M., Greensite J., Olejník S., “The structure of projected center vortices in lattice gauge theory”, J. High Energy Phys., 1999, no. 3, 019, arXiv: hep-lat/9903023 | DOI

[30] Engelhardt M., Langfeld K., Reinhardt H., Tennert O., “Deconfinement in SU(2) Yang–Mills theory as a center vortex percolation transition”, Phys. Rev. D, 61 (2000), 054504, arXiv: hep-lat/9904004 | DOI

[31] Gattnar J., Langfeld K., Schäfke A., Reinhardt H., “Center-vortex dominance after dimensional reduction of $SU(2)$ lattice gauge theory”, Phys. Lett. B, 489 (2000), 251, arXiv: hep-lat/0005016 | DOI | MR | Zbl

[32] Bali G.S., Fingberg J., Heller U.M., Karsch F., Schilling K., “Spatial string tension in the deconfined phase of $(3+1)$-dimensional SU(2) gauge theory”, Phys. Rev. Lett., 71 (1993), 3059, arXiv: hep-lat/9306024 | DOI

[33] Kruczenski M., Lawrence A., “Random walks and the Hagedorn transition”, J. High Energy Phys., 2006, no. 7, 031, arXiv: hep-th/0508148 | DOI | MR

[34] Gorsky A., Zakharov V., “Magnetic strings in QCD as non-Abelian vortices”, Phys. Rev. D, 77 (2008), 045017, arXiv: 0707.1284 [hep-th] | DOI

[35] Vuorinen A., Yaffe L.G., “$Z(3)$-symmetric effective theory for $SU(3)$ Yang–Mills theory at high temperature”, Phys. Rev. D, 74 (2006), 025011, arXiv: hep-ph/0604100 | DOI

[36] Pisarski R.D., “Fuzzy bags and Wilson lines”, Prog. Theor. Phys. Suppl., 168 (2007), 276, arXiv: hep-ph/0612191 | DOI

[37] de Forcrand Ph., Kurkela A., Vuorinen A., “Center-symmetric effective theory for high-temperature SU(2) Yang–Mills theory”, Phys. Rev. D, 77 (2008), 125014, arXiv: 0801.1566 [hep-ph] | DOI

[38] Chernodub M.N., Nakamura A., Zakharov V.I., “Manifestations of magnetic vortices in the equation of state of a Yang–Mills plasma”, Phys. Rev. D, 78 (2008), 074021, arXiv: 0807.5012 [hep-lat] | DOI | MR

[39] Hioki S., Kitahara S., Kiura S., Matsubara Y., Miyamura O., Ohno S., Suzuki T., “Abelian dominance in SU(2) color confinement”, Phys. Lett. B, 272 (1991), 326 ; 281 (1992), 416 | DOI | DOI

[40] Chernodub M.N., D'Alessandro A., D'Elia M., Zakharov V.I., Thermal monopoles and selfdual dyons in the quark–gluon plasma, E-print, 2009, arXiv: 0909.5441 [hep-ph]

[41] Bornyakov V.G., Chernodub M.N., Gubarev F.V., Polikarpov M.I., Suzuki T., Veselov A.I., Zakharov V.I., “Anatomy of the lattice magnetic monopoles”, Phys. Lett. B, 537 (2002), 291, arXiv: hep-lat/0103032 | DOI | Zbl

[42] Gubarev F.V., Kovalenko A.V., Polikarpov M.I., Syritsyn S.N., Zakharov V.I., “Fine tuned vortices in lattice $SU(2)$ gluodynamics”, Phys. Lett. B, 574 (2003), 136, arXiv: hep-lat/0212003 | DOI | Zbl