Deconfinement phase transition in mirror of symmetries
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 84-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We argue that the deconfinement phase transition in Yang–Mills theories can be viewed as a change of effective non-perturbative degrees of freedom and of symmetries of their interactions. In short, the strings in four dimensions (4d) at temperatures below the critical temperature $T_\mathrm c$ are replaced by particles, or field theories in 3d at $T>T_\mathrm c$. The picture emerges within various approaches based on dual models, lattice data and effective field theoretic models. We concentrate mostly on the lattice data, or the language of quantum geometry.
@article{TRSPY_2011_272_a7,
     author = {M. N. Chernodub and A. Nakamura and V. I. Zakharov},
     title = {Deconfinement phase transition in mirror of symmetries},
     journal = {Informatics and Automation},
     pages = {84--96},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/}
}
TY  - JOUR
AU  - M. N. Chernodub
AU  - A. Nakamura
AU  - V. I. Zakharov
TI  - Deconfinement phase transition in mirror of symmetries
JO  - Informatics and Automation
PY  - 2011
SP  - 84
EP  - 96
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/
LA  - en
ID  - TRSPY_2011_272_a7
ER  - 
%0 Journal Article
%A M. N. Chernodub
%A A. Nakamura
%A V. I. Zakharov
%T Deconfinement phase transition in mirror of symmetries
%J Informatics and Automation
%D 2011
%P 84-96
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/
%G en
%F TRSPY_2011_272_a7
M. N. Chernodub; A. Nakamura; V. I. Zakharov. Deconfinement phase transition in mirror of symmetries. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 84-96. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a7/