Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_272_a18, author = {George Savvidy}, title = {Non-Abelian tensor gauge fields}, journal = {Informatics and Automation}, pages = {212--226}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a18/} }
George Savvidy. Non-Abelian tensor gauge fields. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 212-226. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a18/
[1] Yang C.N., Mills R.L., “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96 (1954), 191 | DOI | MR
[2] Chern S.S., Topics in differential geometry, Ch. III: Theory of connections, Inst. Adv. Study, Princeton, NJ, 1951 | MR | Zbl
[3] Savvidy G., “Non-Abelian tensor gauge fields: Generalization of Yang–Mills theory”, Phys. Lett. B, 625 (2005), 341 | DOI | MR | Zbl
[4] Savvidy G., “Non-Abelian tensor gauge fields. I”, Intern. J. Mod. Phys. A, 21 (2006), 4931 | DOI | MR | Zbl
[5] Savvidy G., “Non-Abelian tensor gauge fields. II”, Intern. J. Mod. Phys. A, 21 (2006), 4959 | DOI | MR | Zbl
[6] Coleman S., Mandula J., “All possible symmetries of the $S$ matrix”, Phys. Rev., 159 (1967), 1251 | DOI | Zbl
[7] Haag R., Łopuszański J.T., Sohnius M., “All possible generators of supersymmetries of the $S$-matrix”, Nucl. Phys. B, 88 (1975), 257 | DOI | MR
[8] Barrett J.K., Savvidy G., “A dual Lagrangian for non-Abelian tensor gauge fields”, Phys. Lett. B, 652 (2007), 141 | DOI | MR | Zbl
[9] Savvidy G., “Interaction of non-Abelian tensor gauge fields”, Arm. J. Math., 1 (2008), 1, arXiv: 0804.2003 [hep-th] | MR | Zbl
[10] Rarita W., Schwinger J., “On a theory of particles with half-integral spin”, Phys. Rev., 60 (1941), 61 | DOI | Zbl
[11] Singh L.P.S., Hagen C.R., “Lagrangian formulation for arbitrary spin. II: The fermion case”, Phys. Rev. D, 9 (1974), 910 | DOI
[12] Fang J., Fronsdal C., “Massless fields with half-integral spin”, Phys. Rev. D, 18 (1978), 3630 | DOI
[13] Savvidy G., “Solution of free field equations in non-Abelian tensor gauge field theory”, Phys. Lett. B, 682 (2009), 143 | DOI | MR
[14] Cornwall J.M., Levin D.N., Tiktopoulos G., “Uniqueness of spontaneously broken gauge theories”, Phys. Rev. Lett., 30 (1973), 1268 | DOI
[15] Llewellyn Smith C.H., “High-energy behaviour and gauge symmetry”, Phys. Lett. B, 46 (1973), 233 | DOI
[16] Schwinger J., “Gauge invariance and mass”, Phys. Rev., 125 (1962), 397 | DOI | MR | Zbl
[17] Schwinger J., “Gauge invariance and mass. II”, Phys. Rev., 128 (1962), 2425 | DOI | MR | Zbl
[18] Kunimasa T., Gotō T., “Generalization of the Stueckelberg formalism to the massive Yang–Mills field”, Prog. Theor. Phys., 37 (1967), 452 | DOI
[19] Veltman M., “Perturbation theory of massive Yang–Mills fields”, Nucl. Phys. B, 7 (1968), 637 | DOI
[20] Slavnov A.A., Faddeev L.D., “Bezmassovoe i massivnoe pole Yanga–Millsa”, TMF, 3:1 (1970), 18 | MR
[21] van Dam H., Veltman M., “Massive and mass-less Yang–Mills and gravitational fields”, Nucl. Phys. B, 22 (1970), 397 | DOI
[22] Slavnov A.A., “Massivnye kalibrovochnye polya”, TMF, 10:3 (1972), 305
[23] Veltman M.J.G., “Nobel lecture: From weak interactions to gravitation”, Rev. Mod. Phys., 72 (2000), 341 | DOI | MR | Zbl
[24] Sikivie P., An introduction to technicolor, Preprint CERN-TH-2951, 1980
[25] Farhi E., Susskind L., “Technicolour”, Phys. Rep., 74 (1981), 277 | DOI
[26] Dimopoulos S., Ellis J., “Challenges for extended technicolour theories”, Nucl. Phys. B, 182 (1981), 505 | DOI
[27] Slavnov A.A., “Mekhanizm Khiggsa kak kollektivnyi effekt, obuslovlennyi dopolnitelnym izmereniem”, TMF, 148:3 (2006), 339 | DOI | MR | Zbl
[28] Deser S., Jackiw R., Templeton S., “Three-dimensional massive gauge theories”, Phys. Rev. Lett., 48 (1982), 975 | DOI
[29] Deser S., Jackiw R., Templeton S., “Topologically massive gauge theories”, Ann. Phys., 140 (1982), 372 | DOI | MR
[30] Schonfeld J.F., “A mass term for three-dimensional gauge fields”, Nucl. Phys. B, 185 (1981), 157 | DOI
[31] Cremmer E., Scherk J., “Spontaneous dynamical breaking of gauge symmetry in dual models”, Nucl. Phys. B, 72 (1974), 117 | DOI
[32] Hagen C.R., “Action-principle quantization of the antisymmetric tensor field”, Phys. Rev. D, 19 (1979), 2367 | DOI | MR
[33] Kalb M., Ramond P., “Classical direct interstring action”, Phys. Rev. D, 9 (1974), 2273 | DOI
[34] Nambu Y., “Magnetic and electric confinement of quarks”, Phys. Rep., 23 (1976), 250 | DOI
[35] Ogievetskii V.I., Polubarinov I.V., “Notof i ego vozmozhnye vzaimodeistviya”, Yad. fiz., 4:1 (1966), 216
[36] Aurilia A., Takahashi Y., “Generalized Maxwell equations and the gauge mixing mechanism of mass generation”, Prog. Theor. Phys., 66 (1981), 693 | DOI
[37] Freedman D.Z., P.K.Townsend, “Antisymmetric tensor gauge theories and non-linear $\sigma $-models”, Nucl. Phys. B, 177 (1981), 282 | DOI | MR
[38] Slavnov A.A., Frolov S.A., “Kvantovanie neabeleva antisimmetrichnogo tenzornogo polya”, TMF, 75:2 (1988), 201 | MR
[39] Allen T.J., Bowick M.J., Lahiri A., “Topological mass generation in $(3+1)$-dimensions”, Mod. Phys. Lett. A, 6 (1991), 559 | DOI | MR | Zbl
[40] Henneaux M., Lemes V.E.R., Sasaki C.A.G., Sorella S.P., Ventura O.S., Vilar L.C.Q., “A no-go theorem for the nonabelian topological mass mechanism in four dimensions”, Phys. Lett. B, 410 (1997), 195, arXiv: hep-th/9707129 | DOI
[41] Lahiri A., “Dynamical non-Abelian two-form: BRST quantization”, Phys. Rev. D, 55 (1997), 5045, arXiv: hep-ph/9609510 | DOI | MR
[42] Botta Cantcheff M., “Doublet groups, extended Lie algebras, and well defined gauge theories for the two-form field”, Intern. J. Mod. Phys. A, 20 (2005), 2673, arXiv: hep-th/0310156 | DOI | MR | Zbl
[43] Savvidy G., Topological mass generation in four-dimensional gauge theory, E-print, 2010, arXiv: 1001.2808 [hep-th] | MR