Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2011_272_a13, author = {V. G. Kadyshevsky}, title = {On new geometrical concept of local quantum field}, journal = {Informatics and Automation}, pages = {170--179}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a13/} }
V. G. Kadyshevsky. On new geometrical concept of local quantum field. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 170-179. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a13/
[1] Newton T.D., Wigner E.P., “Localized states for elementary systems”, Rev. Mod. Phys., 21 (1949), 400 | DOI | MR | Zbl
[2] Kadyshevsky V.G., Mateev M.D., Rodionov V.N., Sorin A.S., Towards a maximal mass model, Preprint CERN-TH/2007-150, CERN, Geneva, 2007, arXiv: 0708.4205v1 [hep-ph]
[3] Kadyshevsky V.G., “Fundamental length hypothesis and new concept of gauge vector field”, Nucl. Phys. B, 141 (1978), 477 | DOI | MR
[4] Kadyshevsky V.G., “Fundamental length hypothesis in a gauge theory context”, Group theoretical methods in physics, Seventh Intern. Colloq. and Integrative Conf. on Group Theory and Math. Phys., Austin, Texas, 1978, Lect. Notes Phys., 94, Springer, Berlin, 1979, 114–124 | DOI
[5] Kadyshevsky V.G., Toward a more profound theory of electromagnetic interactions, Preprint Fermilab-Pub. 78/070-THY, Fermilab, Batavia, IL, 1978
[6] Kadyshevskii V.G., “Novyi podkhod k teorii elektromagnitnykh vzaimodeistvii”, EChAYa, 11:1 (1980), 5 | MR
[7] Kadyshevsky V.G., Mateev M.D., “Local gauge invariant QED with fundamental length”, Phys. Lett. B, 106 (1981), 139 | DOI
[8] Kadyshevsky V.G., Mateev M.D., “Quantum field theory and a new universal high-energy scale. I: The scalar model”, Nuovo Cimento A, 87 (1985), 324 | DOI
[9] Chizhov M.V., Donkov A.D., Ibadov R.M., Kadyshevsky V.G., Mateev M.D., “Quantum field theory and a new universal high-energy scale. II: Gauge vector fields”, Nuovo Cimento A, 87 (1985), 350 | DOI
[10] Chizhov M.V., Donkov A.D., Ibadov R.M., Kadyshevsky V.G., Mateev M.D., “Quantum field theory and a new universal high-energy scale. III: Dirac fields”, Nuovo Cimento A, 87 (1985), 373 | DOI
[11] Kadyshevskii V.G., “K voprosu o konechnosti spektra mass elementarnykh chastits”, EChAYa, 29:3 (1998), 563