Remarks on gauge invariance and first-class constraints
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 152-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Gauge symmetries lead to first-class constraints. This assertion is, of course, true only for non-trivial gauge symmetries, i.e., gauge symmetries that act non-trivially on-shell on the dynamical variables. We illustrate this well-appreciated fact for time reparametrization invariance in the context of modifications of gravity – suggested in a recent proposal by Hořava – in which the Hamiltonian constraint is deformed by arbitrary spatial diffeomorphism invariant terms, where some subtleties are found to arise.
@article{TRSPY_2011_272_a11,
     author = {Marc Henneaux and Axel Kleinschmidt and Gustavo Lucena G\'omez},
     title = {Remarks on gauge invariance and first-class constraints},
     journal = {Informatics and Automation},
     pages = {152--161},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a11/}
}
TY  - JOUR
AU  - Marc Henneaux
AU  - Axel Kleinschmidt
AU  - Gustavo Lucena Gómez
TI  - Remarks on gauge invariance and first-class constraints
JO  - Informatics and Automation
PY  - 2011
SP  - 152
EP  - 161
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a11/
LA  - en
ID  - TRSPY_2011_272_a11
ER  - 
%0 Journal Article
%A Marc Henneaux
%A Axel Kleinschmidt
%A Gustavo Lucena Gómez
%T Remarks on gauge invariance and first-class constraints
%J Informatics and Automation
%D 2011
%P 152-161
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a11/
%G en
%F TRSPY_2011_272_a11
Marc Henneaux; Axel Kleinschmidt; Gustavo Lucena Gómez. Remarks on gauge invariance and first-class constraints. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 152-161. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a11/