Cosmological models with Yang--Mills fields
Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 129-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss cosmological models involving homogeneous and isotropic Yang–Mills (YM) fields. Such models were proposed recently as an alternative to scalar models of cosmic acceleration. There exists a unique $\mathrm{SU}(2)$ YM configuration (generalizable to larger gauge groups) whose energy–momentum tensor is homogeneous and isotropic in space. It is parameterized by a single scalar field with a quartic potential. In the case of the closed universe the coupled YM–doublet Higgs system admits homogeneous and isotropic configurations as well. While pure Einstein–Yang–Mills (EYM) cosmology with the standard conformally invariant YM action gives rise to the hot universe, Einstein–Yang–Mills–Higgs (EYMH) cosmology has a variety of regimes which include inflationary stages and bounces, and exhibits global cycling behavior reminiscent of the multiverse developed in time. We also discuss other mechanisms of conformal symmetry breaking such as the string-inspired Born–Infeld (BI) modification of the YM action or field-theoretical quantum corrections.
@article{TRSPY_2011_272_a10,
     author = {Dmitry V. Gal'tsov and Evgeny A. Davydov},
     title = {Cosmological models with {Yang--Mills} fields},
     journal = {Informatics and Automation},
     pages = {129--151},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a10/}
}
TY  - JOUR
AU  - Dmitry V. Gal'tsov
AU  - Evgeny A. Davydov
TI  - Cosmological models with Yang--Mills fields
JO  - Informatics and Automation
PY  - 2011
SP  - 129
EP  - 151
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a10/
LA  - ru
ID  - TRSPY_2011_272_a10
ER  - 
%0 Journal Article
%A Dmitry V. Gal'tsov
%A Evgeny A. Davydov
%T Cosmological models with Yang--Mills fields
%J Informatics and Automation
%D 2011
%P 129-151
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a10/
%G ru
%F TRSPY_2011_272_a10
Dmitry V. Gal'tsov; Evgeny A. Davydov. Cosmological models with Yang--Mills fields. Informatics and Automation, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 129-151. http://geodesic.mathdoc.fr/item/TRSPY_2011_272_a10/

[1] Starobinskii A.A., “Spektr reliktovogo gravitatsionnogo izlucheniya i nachalnoe sostoyanie Vselennoi”, Pisma v ZhETF, 30:11 (1979), 719

[2] Starobinsky A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B., 91 (1980), 99 | DOI

[3] Guth A.H., “Inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23 (1981), 347 | DOI

[4] Linde A.D., “A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. B, 108 (1982), 389 | DOI | MR

[5] Albrecht A., Steinhardt P.J., “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett., 48 (1982), 1220 | DOI

[6] Kinney W.H., TASI lectures on inflation, E-print, 2009, arXiv: 0902.1529 [astro-ph.CO]

[7] Baumann D., Peiris H.V., Cosmological inflation: Theory and observations, E-print, 2008, arXiv: 0810.3022 [astro-ph]

[8] Linde A., “Inflationary cosmology”, Inflationary cosmology, Lect. Notes Phys., 738, Springer, Berlin, 2008, 1–54, arXiv: 0705.0164 [hep-th] | DOI | MR | Zbl

[9] Copeland E.J., Sami M., Tsujikawa S., “Dynamics of dark energy”, Intern. J. Mod. Phys. D., 15 (2006), 1753, arXiv: hep-th/0603057 | DOI | MR | Zbl

[10] Trodden M., Carroll S.M., TASI lectures: Introduction to cosmology, E-print, 2004, arXiv: astro-ph/0401547 | MR

[11] Ford L.H., “Inflation driven by a vector field”, Phys. Rev. D, 40 (1989), 967 | DOI

[12] Armendáriz-Picón C., “Could dark energy be vector-like?”, J. Cosmol. and Astropart. Phys., 2004, no. 7, 007, arXiv: astro-ph/0405267 | DOI

[13] Kiselev V.V., “Vector field as a quintessence partner”, Class. and Quantum Grav., 21 (2004), 3323, arXiv: gr-qc/0402095 | DOI | MR | Zbl

[14] Wei H., Cai R.-G., “Interacting vectorlike dark energy, the first and second cosmological coincidence problems”, Phys. Rev. D, 73 (2006), 083002, arXiv: astro-ph/0603052 | DOI

[15] Wei H., Cai R.-G., “Cheng–Weyl vector field and its cosmological application”, J. Cosmol. and Astropart. Phys., 2007, no. 9, 015, arXiv: astro-ph/0607064 | DOI

[16] Jiménez J.B., Maroto A.L., A cosmic vector for dark energy, E-print, 2008, arXiv: 0801.1486 [astro-ph]

[17] Koivisto T.S., Mota D.F., Vector field models of inflation and dark energy, E-print, 2008, arXiv: 0805.4229 [astro-ph] | MR

[18] Jiménez J.B., Lazkoz R., Maroto A.L., Cosmic vector for dark energy: constraints from SN, CMB and BAO, E-print, 2009, arXiv: 0904.0433 [astro-ph.CO]

[19] Linde A.D., “Classical Yang–Mills solutions, condensation of W mesons and symmetry of composition of superdense matter”, Phys. Lett. B, 86 (1979), 39 | DOI

[20] Gal'tsov D.V., Volkov M.S., “Yang–Mills cosmology. Cold matter for a hot universe”, Phys. Lett. B, 256 (1991), 17 | DOI | MR

[21] Zhao W., Zhang Y., “The state equation of Yang–Mills field dark energy models”, Class. and Quantum Grav., 23 (2006), 3405, arXiv: astro-ph/0510356 | DOI | MR | Zbl

[22] Zhang Y., Xia T.Y., Zhao W., “Yang–Mills condensate dark energy coupled with matter and radiation”, Class. and Quantum Grav., 24 (2007), 3309, arXiv: gr-qc/0609115 | DOI | MR | Zbl

[23] Zhao W., Xu D., “Evolution of the magnetic component in Yang–Mills condensate dark energy models”, Intern. J. Mod. Phys. D, 16 (2007), 1735, arXiv: gr-qc/0701136 | DOI | Zbl

[24] Bamba K., Nojiri S., Odintsov S.D., “Inflationary cosmology and the late-time accelerated expansion of the universe in nonminimal Yang–Mills–$F(R)$ gravity and nonminimal vector–$F(R)$ gravity”, Phys. Rev. D, 77 (2008), 123532, arXiv: 0803.3384 [hep-th] | DOI

[25] Gal'tsov D.V., Non-Abelian condensates as alternative for dark energy, E-print, 2009, arXiv: 0901.0115 [gr-qc]

[26] De Lorenci V.A., Nonsingular and accelerated expanding universe from effective Yang–Mills theory, E-print, 2009, arXiv: 0902.2672 [gr-qc] | Zbl

[27] Xia T.Y., Zhang Y., “2-loop quantum Yang–Mills condensate as dark energy”, Phys. Lett. B, 656 (2007), 19, arXiv: 0710.0077 [astro-ph] | DOI | MR | Zbl

[28] Wang S., Zhang Y., Xia T.Y., “The three-loop Yang–Mills condensate dark energy model and its cosmological constraints”, J. Cosmol. and Astropart. Phys., 2008, no. 10, 037, arXiv: 0803.2760 [gr-qc] | DOI

[29] Zhao W., “Statefinder diagnostic for the Yang–Mills dark energy model”, Intern. J. Mod. Phys. D., 17 (2008), 1245, arXiv: 0711.2319 [gr-qc] | DOI | Zbl

[30] Tong M., Zhang Y., Xia T., “Statefinder parameters for the quantum effective Yang–Mills condensate dark energy model”, Intern. J. Mod. Phys. D, 18 (2009), 797, arXiv: 0809.2123 [gr-qc] | DOI | Zbl

[31] Zhao W., “Attractor solution in coupled Yang–Mills field dark energy models”, Intern. J. Mod. Phys. D, 18 (2009), 1331, arXiv: 0810.5506 | DOI | MR | Zbl

[32] Zhao W., Zhang Y., Tong M., Quantum Yang–Mills condensate dark energy models, E-print, 2009, arXiv: 0909.3874 [astro-ph.CO]

[33] Cervero J., Jacobs L., “Classical Yang–Mills fields in a Robertson–Walker universe”, Phys. Lett. B, 78 (1978), 427 | DOI

[34] Henneaux M., “Remarks on spacetime symmetries and nonabelian gauge fields”, J. Math. Phys., 23 (1982), 830 | DOI | MR | Zbl

[35] Hosotani Y., “Exact solution to the Einstein–Yang–Mills equation”, Phys. Lett. B, 147 (1984), 44 | DOI | MR

[36] Moniz P.V., Mourão J.M., “Homogeneous and isotropic closed cosmologies with a gauge sector”, Class. and Quantum Grav., 8 (1991), 1815 | DOI | MR

[37] Bertolami O., Kubyshin Yu.A., Mourão J.M., “Stability of compactification in Einstein–Yang–Mills theories after inflation”, Phys. Rev. D, 45 (1992), 3405 | DOI | MR

[38] Moniz P.V., Mourão J.M., Sá P.M., “The dynamics of a flat Friedmann–Robertson–Walker inflationary model in the presence of gauge fields”, Class. and Quantum Grav., 10 (1993), 517 | DOI | MR

[39] Cavaglià M., de Alfaro V., “On a quantum miniuniverse filled with Yang–Mills radiation”, Mod. Phys. Lett. A, 9 (1994), 569, arXiv: gr-qc/9310001 | DOI | MR

[40] Bertolami O., Moniz P.V., “Decoherence of Friedmann–Robertson–Walker geometries in the presence of massive vector fields with $\mathrm U(1)$ or $\mathrm {SO}(3)$ global symmetries”, Nucl. Phys. B, 439 (1995), 259, arXiv: gr-qc/9410027 | DOI | MR | Zbl

[41] Kapetanakis D., Koutsoumbas G., Lukas A., Mayr P., “Quantum cosmology with Yang–Mills fields”, Nucl. Phys. B, 433 (1995), 435, arXiv: hep-th/9403131 | DOI | MR | Zbl

[42] Bento M.C., Bertolami O., “General cosmological features of the Einstein–Yang–Mills dilaton system in string theories”, Phys. Lett. B, 336 (1994), 6, arXiv: gr-qc/9405038 | DOI | MR

[43] Cavaglià M., de Alfaro V., Filippov A.T., “Quantization of the Robertson–Walker universe”, Quantum systems: New trends and methods, World Sci., London, 1995, 31–46 | MR

[44] Darian B.K., Künzle H.P., “Cosmological Einstein–Yang–Mills equations”, J. Math. Phys., 38 (1997), 4696, arXiv: gr-qc/9610026 | DOI | MR | Zbl

[45] Moniz P.V., Quantization of a Friedmann–Robertson–Walker model with gauge fields in $N=1$ supergravity, E-print, 1996, arXiv: gr-qc/9604045 | MR

[46] Moniz P.V., “FRW model with vector fields in $N=1$ supergravity”, Helv. Phys. Acta., 69 (1996), 293 | MR | Zbl

[47] Künzle H.P., “$\mathrm {SU}(n)$–Einstein–Yang–Mills fields with spherical symmetry”, Class. and Quantum Grav., 8 (1991), 2283 | DOI | MR | Zbl

[48] Füzfa A., “Gravitational instability of Yang–Mills cosmologies”, Class. and Quantum Grav., 20 (2003), 4753, arXiv: gr-qc/0310032 | DOI | MR | Zbl

[49] Zhao W., “Perturbations of the Yang–Mills field in the universe”, Res. Astron. and Astrophys., 9 (2009), 874, arXiv: astro-ph/0508010 | DOI | MR

[50] Jiménez J.B., Koivisto T.S., Maroto A.L., Mota D.F., Perturbations in electromagnetic dark energy, E-print, 2009, arXiv: 0907.3648 [physics.gen-ph]

[51] Gibbons G.W., Steif A.R., “Yang–Mills cosmologies and collapsing gravitational sphalerons”, Phys. Lett. B, 320 (1994), 245, arXiv: hep-th/9311098 | DOI | MR

[52] Volkov M.S., “Einstein–Yang–Mills sphalerons and fermion number non-conservation”, Phys. Lett. B, 328 (1994), 89, arXiv: hep-th/9312005 | DOI

[53] Volkov M.S., “Computation of the winding number diffusion rate due to the cosmological sphaleron”, Phys. Rev. D, 54 (1996), 5014, arXiv: hep-th/9604054 | DOI

[54] Ding S., “Cosmological sphaleron from real tunneling and its fate”, Phys. Rev. D, 50 (1994), 3755, arXiv: gr-qc/9407036 | DOI

[55] Volkov M.S., Gal'tsov D.V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rep., 319 (1999), 1, arXiv: hep-th/9810070 | DOI | MR

[56] Hosoya A., Ogura W., “Wormhole instanton solution in the Einstein–Yang–Mills system”, Phys. Lett. B, 225 (1989), 117 | DOI | MR

[57] Das A., Maharana J., “Wormhole solution in coupled Yang–Mills–axion system”, Phys. Rev. D, 41 (1990), 699 | DOI | MR

[58] Rey S.-J., “Space–time wormholes with Yang–Mills fields”, Nucl. Phys. B, 336 (1990), 146 | DOI | MR

[59] Gupta A.K., Hughes J., Preskill J., Wise M.B., “Magnetic wormholes and topological symmetry”, Nucl. Phys. B, 333 (1990), 195 | DOI

[60] Bertolami O., Mourão J.M., “Euclideanized Einstein–Yang–Mills equations, wormholes and the ground-state wave function of a radiation dominated universe”, The physical universe: The interface between cosmology, astrophysics and particle physics, Proc. XII Autumn School Phys., Lisbon (Portugal), 1990, Lect. Notes Phys., 383, Springer, Berlin, 1991, 21–38 | DOI

[61] Bertolami O., Mourão J.M., Picken R.F., Volobuev I.P., “Dynamics of euclideanized Einstein–Yang–Mills systems with arbitrary gauge groups”, Intern. J. Mod. Phys. A, 6 (1991), 4149 | DOI | MR

[62] Verbin Y., Davidson A., “Quantized non-abelian wormholes”, Phys. Lett. B, 229 (1989), 364 | DOI | MR

[63] Donets E.E., Gal'tsov D.V., “Continuous family of Einstein–Yang–Mills wormholes”, Phys. Lett. B, 294 (1992), 44, arXiv: gr-qc/9209008 | DOI | MR

[64] Donets E.E., Gal'tsov D.V., “Wormhole solutions in coupled Einstein–Yang–Mills axion system”, Classical and quantum gravity, Proc. 1st Iberian Meeting on Gravity, Évora (Portugal), 1992, World Sci., Singapore, 1993, 289–292 | MR

[65] Lukas A., “Wormhole effects on Yang–Mills theory”, Nucl. Phys. B, 442 (1995), 533, arXiv: gr-qc/9407037 | DOI | MR

[66] Kim H., Yoon Y., “Yang–Mills instantons in the gravitational instanton backgrounds”, Phys. Lett. B, 495 (2000), 169, arXiv: hep-th/0002151 | DOI

[67] Kim H., Yoon Y., “Instanton–meron hybrid in the background of gravitational instantons”, Phys. Rev. D, 63 (2001), 125002, arXiv: hep-th/0012055 | DOI | MR

[68] Moniz P.V., “FRW wormhole instantons in the non-Abelian Born–Infeld theory”, Phys. Rev. D, 66 (2002), 064012 | DOI | MR

[69] Mosna R.A., Tavares G.M., “New self-dual solutions of $SU(2)$ Yang–Mills theory in Euclidean Schwarzschild space”, Phys. Rev. D, 80 (2009), 105006, arXiv: 0909.5145 [math-ph] | DOI

[70] Breitenlohner P., Forgács P., Maison D., “Static cosmological solutions of the Einstein–Yang–Mills–Higgs equations”, Phys. Lett. B, 489 (2000), 397, arXiv: gr-qc/0006046 | DOI | MR

[71] Linde A., “Hybrid inflation”, Phys. Rev. D, 49 (1994), 748, arXiv: astro-ph/9307002 | DOI

[72] Liddle A.R., Lyth D.H., Cosmological inflation and large-scale structure, Cambridge Univ. Press, Cambridge, 2000 | MR

[73] Liddle A.R., Leach S.M., “How long before the end of inflation were observable perturbations produced?”, Phys. Rev. D, 68 (2003), 103503, arXiv: astro-ph/0305263 | DOI | MR

[74] Tegmark M., Parallel universes, E-print, 2003, arXiv: astro-ph/0302131 | MR | Zbl

[75] Tegmark M., “Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations”, Sci. Amer., 288:5 (2003), 40 | DOI | MR

[76] Weinberg S., Living in the multiverse, E-print, 2005, arXiv: hep-th/0511037

[77] Tseytlin A.A., “On non-abelian generalisation of the Born–Infeld action in string theory”, Nucl. Phys. B, 501 (1997), 41 | DOI | MR | Zbl

[78] Dyadichev V.V., Gal'tsov D.V., Zorin A.G., Zotov M.Yu., “Non-Abelian Born–Infeld cosmology”, Phys. Rev. D, 65 (2002), 084007, arXiv: hep-th/0111099 | DOI | MR

[79] Gal'tsov D.V., Dyadichev V.V., “Non-Abelian brane cosmology”, Astrophys. and Space Sci., 283 (2003), 667, arXiv: hep-th/0301044 | DOI

[80] Füzfa A., Alimi J.-M., “Non-Abelian Einstein–Born–Infeld dilaton cosmology”, Phys. Rev. D, 73 (2006), 023520, arXiv: gr-qc/0511090 | DOI

[81] Füzfa A., Alimi J.-M., “Dark energy as a Born–Infeld gauge interaction violating the equivalence principle”, Phys. Rev. Lett., 97 (2006), 061301, arXiv: astro-ph/0604517 | DOI | MR | Zbl

[82] Novello M., Goulart E., Salim J.M., Perez Bergliaffa S.E., “Cosmological effects of nonlinear electrodynamics”, Class. and Quantum Grav., 24 (2007), 3021, arXiv: gr-qc/0610043 | DOI | MR | Zbl

[83] Elizalde E., Lidsey J.E., Nojiri S., Odintsov S.D., “Born–Infeld quantum condensate as dark energy in the universe”, Phys. Lett. B, 574 (2003), 1, arXiv: hep-th/0307177 | DOI | MR | Zbl

[84] Klinkhamer F.R., Volovik G.E., “Gluonic vacuum, $q$-theory, and the cosmological constant”, Phys. Rev. D, 79 (2009), 063527, arXiv: 0811.4347 [gr-qc] | DOI

[85] Gal'tsov D.V., Dyadichev V.V., “Stabilization of Yang–Mills chaos in non-Abelian Born–Infeld theory”, Pisma v ZhETF, 77:4 (2003), 184 ; JETP Lett., 77 (2003), 154–157 ; arXiv: hep-th/0301069 | DOI | Zbl

[86] Dyadichev V.V., Gal'tsov D.V., Vargas Moniz P., “Chaos–order transition in Bianchi type I non-Abelian Born–Infeld cosmology”, Phys. Rev. D, 72 (2005), 084021, arXiv: hep-th/0412334 | DOI | MR

[87] Dyadichev V.V., Gal'tsov D.V., Moniz P.V., “New features about chaos in Bianchi I non-Abelian Born–Infeld cosmology”, AIP Conf. Proc., 861 (2006), 312 | DOI

[88] Tipler F.J., “The structure of the world from pure numbers”, Rep. Prog. Phys., 68 (2005), 897, arXiv: 0704.3276 [hep-th] | DOI | MR