Property of almost independent images for ergodic transformations without partial rigidity
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 29-39

Voir la notice de l'article provenant de la source Math-Net.Ru

S. V. Tikhonov, in his paper of 2007 devoted to a new metric on the class of mixing transformations, faced the following natural question when studying the properties of such transformations: Does there exist a set $A$ with $\mu(A)=\frac12$ such that the inequality $|\mu(A\cap T^iA)-\mu(A)^2|\varepsilon$ holds for all $i>0$? V. V. Ryzhikov (2009) obtained the following criterion: For an ergodic transformation $T$, a set $A$ of given measure such that $A$ and its images under $T$ are $\varepsilon$-independent exists if and only if $T$ does not possess the property of partial rigidity. The aim of the present study is to generalize this proposition to the case of multiple $\varepsilon$-independence of images.
@article{TRSPY_2010_271_a3,
     author = {A. I. Bashtanov},
     title = {Property of almost independent images for ergodic transformations without partial rigidity},
     journal = {Informatics and Automation},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/}
}
TY  - JOUR
AU  - A. I. Bashtanov
TI  - Property of almost independent images for ergodic transformations without partial rigidity
JO  - Informatics and Automation
PY  - 2010
SP  - 29
EP  - 39
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/
LA  - ru
ID  - TRSPY_2010_271_a3
ER  - 
%0 Journal Article
%A A. I. Bashtanov
%T Property of almost independent images for ergodic transformations without partial rigidity
%J Informatics and Automation
%D 2010
%P 29-39
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/
%G ru
%F TRSPY_2010_271_a3
A. I. Bashtanov. Property of almost independent images for ergodic transformations without partial rigidity. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 29-39. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/