Property of almost independent images for ergodic transformations without partial rigidity
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 29-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. V. Tikhonov, in his paper of 2007 devoted to a new metric on the class of mixing transformations, faced the following natural question when studying the properties of such transformations: Does there exist a set $A$ with $\mu(A)=\frac12$ such that the inequality $|\mu(A\cap T^iA)-\mu(A)^2|\varepsilon$ holds for all $i>0$? V. V. Ryzhikov (2009) obtained the following criterion: For an ergodic transformation $T$, a set $A$ of given measure such that $A$ and its images under $T$ are $\varepsilon$-independent exists if and only if $T$ does not possess the property of partial rigidity. The aim of the present study is to generalize this proposition to the case of multiple $\varepsilon$-independence of images.
@article{TRSPY_2010_271_a3,
     author = {A. I. Bashtanov},
     title = {Property of almost independent images for ergodic transformations without partial rigidity},
     journal = {Informatics and Automation},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/}
}
TY  - JOUR
AU  - A. I. Bashtanov
TI  - Property of almost independent images for ergodic transformations without partial rigidity
JO  - Informatics and Automation
PY  - 2010
SP  - 29
EP  - 39
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/
LA  - ru
ID  - TRSPY_2010_271_a3
ER  - 
%0 Journal Article
%A A. I. Bashtanov
%T Property of almost independent images for ergodic transformations without partial rigidity
%J Informatics and Automation
%D 2010
%P 29-39
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/
%G ru
%F TRSPY_2010_271_a3
A. I. Bashtanov. Property of almost independent images for ergodic transformations without partial rigidity. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 29-39. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a3/

[1] Tikhonov S.V., “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, UMN, 62:1 (2007), 209–210 | DOI | MR | Zbl

[2] Ryzhikov V.V., “Poparnaya $\varepsilon $-nezavisimost mnozhestv $T^iA$ dlya peremeshivayuschego preobrazovaniya $T$”, Funkts. analiz i ego pril., 43:2 (2009), 88–91 | DOI | MR | Zbl

[3] Ryzhikov V.V., “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Mat. sb., 183:3 (1992), 133–160 | MR | Zbl

[4] Kalikow S.A., “Twofold mixing implies threefold mixing for rank one transformations”, Ergodic Theory and Dyn. Syst., 4 (1984), 237–259 | DOI | MR | Zbl

[5] Borovkov A.A., Teoriya veroyatnostei, 2-e izd., Nauka, 1986 | MR | Zbl

[6] Kornfeld I.P., Sinai Ya.G., Fomin S.V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[7] Sinai Ya.G., “O slabom izomorfizme preobrazovanii s invariantnoi meroi”, Mat. sb., 63:1 (1964), 23–42 | MR

[8] Katok A.B., “Entropiya i approksimatsii dinamicheskikh sistem periodicheskimi preobrazovaniyami”, Funkts. analiz i ego pril., 1:1 (1967), 75–85 | MR | Zbl

[9] Khalmosh P.R., Lektsii po ergodicheskoi teorii, Izd-vo inostr. lit., M., 1959

[10] Khinchin A.Ya., “Ob osnovnykh teoremakh teorii informatsii”, UMN, 11:1 (1956), 17–75 | Zbl

[11] Alon N., Spenser Dzh., Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007

[12] Lindenstrauss E., “Pointwise theorems for amenable groups”, Invent. math., 146:2 (2001), 259–295 | DOI | MR | Zbl

[13] Pitskel B.S., Stepin A.M., “O svoistve ravnoraspredelennosti entropii kommutativnykh grupp metricheskikh avtomorfizmov”, DAN SSSR, 198:5 (1971), 1021–1024 | MR

[14] Ornstein D.S., “On the root problem in ergodic theory”, Proc. 6th Berkeley Symp. Math. Statist. and Probab., 1970, Univ. Calif. Press, Berkeley, 1972, 347–356 | MR | Zbl

[15] Prikhodko A.A., “Stokhasticheskie konstruktsii potokov ranga $1$”, Mat. sb., 192:12 (2001), 61–92 | DOI | MR | Zbl

[16] El Abdalaoui, El Houcein., “A new class of rank-one transformations with singular spectrum”, Ergodic Theory and Dyn. Syst., 27:5 (2007), 1541–1555 | DOI | MR | Zbl