Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 241-258

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a relationship between a path integral representation of the heat kernel and the construction of a fundamental solution to a diffusion-type equation by the parametrix method; this relationship is used to find the coefficients of a short-time asymptotic expansion of the heat kernel. We extend the approach proposed to the case of diffusion with drift and obtain two-sided estimates for the regularized trace of the corresponding evolution semigroup.
@article{TRSPY_2010_271_a16,
     author = {S. A. Stepin},
     title = {Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup},
     journal = {Informatics and Automation},
     pages = {241--258},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
JO  - Informatics and Automation
PY  - 2010
SP  - 241
EP  - 258
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/
LA  - ru
ID  - TRSPY_2010_271_a16
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
%J Informatics and Automation
%D 2010
%P 241-258
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/
%G ru
%F TRSPY_2010_271_a16
S. A. Stepin. Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 241-258. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/