Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 241-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a relationship between a path integral representation of the heat kernel and the construction of a fundamental solution to a diffusion-type equation by the parametrix method; this relationship is used to find the coefficients of a short-time asymptotic expansion of the heat kernel. We extend the approach proposed to the case of diffusion with drift and obtain two-sided estimates for the regularized trace of the corresponding evolution semigroup.
@article{TRSPY_2010_271_a16,
     author = {S. A. Stepin},
     title = {Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup},
     journal = {Informatics and Automation},
     pages = {241--258},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
JO  - Informatics and Automation
PY  - 2010
SP  - 241
EP  - 258
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/
LA  - ru
ID  - TRSPY_2010_271_a16
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
%J Informatics and Automation
%D 2010
%P 241-258
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/
%G ru
%F TRSPY_2010_271_a16
S. A. Stepin. Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup. Informatics and Automation, Differential equations and topology. II, Tome 271 (2010), pp. 241-258. http://geodesic.mathdoc.fr/item/TRSPY_2010_271_a16/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965 | Zbl

[3] Tsikon Kh., Frëze R., Kirsh V., Saimon B., Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[4] Arsenev A.A., “Asimptotika spektralnoi funktsii uravneniya Shrëdingera”, ZhVMiMF, 7:6 (1967), 1298–1319 | MR | Zbl

[5] Buslaev V.S., “Formuly sledov i nekotorye asimptoticheskie otsenki yadra rezolventy dlya operatora Shrëdingera v trekhmernom prostranstve”, Problemy mat. fiziki, 1 (1966), 82–101 | MR | Zbl

[6] Kannai Y., “Off diagonal short time asymptotics for fundamental solutions of diffusion equations”, Commun. Part. Diff. Equat., 2:8 (1977), 781–830 | DOI | MR

[7] Yafaev D.R., “Operator Shrëdingera: opredeliteli vozmuscheniya, funktsiya spektralnogo sdviga, tozhdestva sledov i prochee”, Funkts. analiz i ego pril., 41:3 (2007), 60–83 | DOI | MR | Zbl

[8] Colin de Verdière Y., “Une formule de traces pour l'opérateur de Schrödinger dans $\mathbb R^3$”, Ann. Sci. École Norm. Supér. Sér. 4, 14:1 (1981), 27–39 | MR | Zbl

[9] Hitrik M., Polterovich I., “Regularized traces and Taylor expansions for the heat semigroup”, J. London Math. Soc. Ser. 2, 68:2 (2003), 402–418 | DOI | MR | Zbl

[10] Sadovnichii V.A., Podolskii V.E., “Sledy operatorov”, UMN, 61:5 (2006), 89–156 | DOI | MR | Zbl

[11] Stepin S.A., “Parametriks, asimptotika yadra i regulyarizovannyi sled diffuzionnoi polugruppy”, DAN, 420:4 (2008), 459–462 | MR | Zbl

[12] Birman M.Sh., Slousch V.A., “Dvustoronnie otsenki dlya sleda raznosti pary polugrupp”, Funkts. analiz i ego pril., 43:3 (2009), 26–32 | DOI | MR | Zbl

[13] Simon B., Functional integration and quantum physics, Acad. Press, New York, 1979 | MR

[14] Molchanov S.A., “Diffuzionnye protsessy i rimanova geometriya”, UMN, 30:1 (1975), 3–59 | MR | Zbl

[15] Melrose R.B., Geometric scattering theory, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[16] Sá Barreto A., Zworski M., “Existence of resonances in potential scattering”, Commun. Pure and Appl. Math., 49 (1996), 1271–1280 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Lieb E., “Bounds on the eigenvalues of the Laplace and Schrödinger operators”, Bull. Amer. Math. Soc., 82 (1976), 751–753 | DOI | MR | Zbl