Families of vector fields which generate the group of diffeomorphisms
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 147-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a compact manifold $M$ and a family of vector fields $\mathcal F$ such that the group generated by $\mathcal F$ acts transitively on $M$, we prove that the group of all diffeomorphisms of $M$ that are isotopic to the identity is generated by the exponentials of vector fields in $\mathcal F$ rescaled by smooth functions.
@article{TRSPY_2010_270_a9,
     author = {Marco Caponigro},
     title = {Families of vector fields which generate the group of diffeomorphisms},
     journal = {Informatics and Automation},
     pages = {147--160},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a9/}
}
TY  - JOUR
AU  - Marco Caponigro
TI  - Families of vector fields which generate the group of diffeomorphisms
JO  - Informatics and Automation
PY  - 2010
SP  - 147
EP  - 160
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a9/
LA  - en
ID  - TRSPY_2010_270_a9
ER  - 
%0 Journal Article
%A Marco Caponigro
%T Families of vector fields which generate the group of diffeomorphisms
%J Informatics and Automation
%D 2010
%P 147-160
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a9/
%G en
%F TRSPY_2010_270_a9
Marco Caponigro. Families of vector fields which generate the group of diffeomorphisms. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 147-160. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a9/