Chebyshev's alternance in the approximation of constants by simple partial fractions
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 86-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniform approximation of real constants by simple partial fractions on a closed interval of the real axis is studied. It is proved that a simple partial fraction of best approximation of degree $n$ for a constant is unique and coincides with this constant at $n$ nodes lying on the interval; moreover, there is a Chebyshev alternance consisting of $n+1$ points.
@article{TRSPY_2010_270_a5,
     author = {V. I. Danchenko and E. N. Kondakova},
     title = {Chebyshev's alternance in the approximation of constants by simple partial fractions},
     journal = {Informatics and Automation},
     pages = {86--96},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a5/}
}
TY  - JOUR
AU  - V. I. Danchenko
AU  - E. N. Kondakova
TI  - Chebyshev's alternance in the approximation of constants by simple partial fractions
JO  - Informatics and Automation
PY  - 2010
SP  - 86
EP  - 96
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a5/
LA  - ru
ID  - TRSPY_2010_270_a5
ER  - 
%0 Journal Article
%A V. I. Danchenko
%A E. N. Kondakova
%T Chebyshev's alternance in the approximation of constants by simple partial fractions
%J Informatics and Automation
%D 2010
%P 86-96
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a5/
%G ru
%F TRSPY_2010_270_a5
V. I. Danchenko; E. N. Kondakova. Chebyshev's alternance in the approximation of constants by simple partial fractions. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 86-96. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a5/