Classification of Morse--Smale diffeomorphisms with one-dimensional set of unstable separatrices
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 62-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^n$ be a closed orientable manifold of dimension $n>3$. We study the class $G_1(M^n)$ of orientation-preserving Morse–Smale diffeomorphisms of $M^n$ such that the set of unstable separatrices of any $f\in G_1(M^n)$ is one-dimensional and does not contain heteroclinic intersections. We prove that the Peixoto graph (equipped with an automorphism) is a complete topological invariant for diffeomorphisms of class $G_1(M^n)$, and construct a standard representative for any class of topologically conjugate diffeomorphisms.
@article{TRSPY_2010_270_a4,
     author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev},
     title = {Classification of {Morse--Smale} diffeomorphisms with one-dimensional set of unstable separatrices},
     journal = {Informatics and Automation},
     pages = {62--85},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a4/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - V. S. Medvedev
TI  - Classification of Morse--Smale diffeomorphisms with one-dimensional set of unstable separatrices
JO  - Informatics and Automation
PY  - 2010
SP  - 62
EP  - 85
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a4/
LA  - ru
ID  - TRSPY_2010_270_a4
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A V. S. Medvedev
%T Classification of Morse--Smale diffeomorphisms with one-dimensional set of unstable separatrices
%J Informatics and Automation
%D 2010
%P 62-85
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a4/
%G ru
%F TRSPY_2010_270_a4
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. Classification of Morse--Smale diffeomorphisms with one-dimensional set of unstable separatrices. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 62-85. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a4/