Existence of planar curves minimizing length and curvature
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 49-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing a curve that is partially hidden or corrupted by minimizing the functional $\int\sqrt{1+K_\gamma^2}\,ds$, depending both on the length and curvature $K$. We fix starting and ending points as well as initial and final directions. For this functional we discuss the problem of existence of minimizers on various functional spaces. We find nonexistence of minimizers in cases in which initial and final directions are considered with orientation. In this case, minimizing sequences of trajectories may converge to curves with angles. We instead prove the existence of minimizers for the “time-reparametrized” functional $\int\|\dot\gamma(t)\|\sqrt{1+K_\gamma^2}\,dt$ for all boundary conditions if the initial and final directions are considered regardless of orientation. In this case, minimizers may present cusps (at most two) but not angles.
@article{TRSPY_2010_270_a3,
     author = {Ugo Boscain and Gr\'egoire Charlot and Francesco Rossi},
     title = {Existence of planar curves minimizing length and curvature},
     journal = {Informatics and Automation},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/}
}
TY  - JOUR
AU  - Ugo Boscain
AU  - Grégoire Charlot
AU  - Francesco Rossi
TI  - Existence of planar curves minimizing length and curvature
JO  - Informatics and Automation
PY  - 2010
SP  - 49
EP  - 61
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/
LA  - en
ID  - TRSPY_2010_270_a3
ER  - 
%0 Journal Article
%A Ugo Boscain
%A Grégoire Charlot
%A Francesco Rossi
%T Existence of planar curves minimizing length and curvature
%J Informatics and Automation
%D 2010
%P 49-61
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/
%G en
%F TRSPY_2010_270_a3
Ugo Boscain; Grégoire Charlot; Francesco Rossi. Existence of planar curves minimizing length and curvature. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 49-61. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/