Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2010_270_a3, author = {Ugo Boscain and Gr\'egoire Charlot and Francesco Rossi}, title = {Existence of planar curves minimizing length and curvature}, journal = {Informatics and Automation}, pages = {49--61}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/} }
TY - JOUR AU - Ugo Boscain AU - Grégoire Charlot AU - Francesco Rossi TI - Existence of planar curves minimizing length and curvature JO - Informatics and Automation PY - 2010 SP - 49 EP - 61 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/ LA - en ID - TRSPY_2010_270_a3 ER -
Ugo Boscain; Grégoire Charlot; Francesco Rossi. Existence of planar curves minimizing length and curvature. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 49-61. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a3/
[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[2] Bellettini G., “Variational approximation of functionals with curvatures and related properties”, J. Convex Anal., 4:1 (1997), 91–108 | MR | Zbl
[3] Boscain U., Rossi F., “Invariant Carnot–Caratheodory metrics on $S^3$, $SO(3)$, $SL(2)$, and lens spaces”, SIAM J. Control and Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[4] Boscain U., Rossi F., “Projective Reeds–Shepp car on $S^2$ with quadratic cost”, ESAIM: Control, Optim. and Calc. Var., 16:2 (2010), 275–297 | DOI | MR | Zbl
[5] Cao F., Gousseau Y., Masnou S., Pérez P., Geometrically guided exemplar-based inpainting, Preprint, 2010 http://math.univ-lyon1.fr/homes-www/masnou/fichiers/publications/inpainting9.pdf
[6] Citti G., Sarti A., “A cortical based model of perceptual completion in the roto-translation space”, J. Math. Imaging and Vision, 24:3 (2006), 307–326 | DOI | MR
[7] Coope I.D., “Curve interpolation with nonlinear spiral splines”, IMA J. Numer. Anal., 13:3 (1993), 327–341 | DOI | MR | Zbl
[8] Dubins L.E., “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79:3 (1957), 497–516 | DOI | MR | Zbl
[9] Linnér A., “Existence of free nonclosed Euler–Bernoulli elastica”, Nonlin. Anal. Theory, Meth. and Appl., 21:8 (1993), 575–593 | DOI | MR | Zbl
[10] Linnér A., “Curve-straightening and the Palais–Smale condition”, Trans. Amer. Math. Soc., 350:9 (1998), 3743–3765 | DOI | MR | Zbl
[11] Loewen P.D., “On the Lavrentiev phenomenon”, Canad. Math. Bull., 30:1 (1987), 102–108 | DOI | MR | Zbl
[12] Moiseev I., Sachkov Yu.L., “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM: Control, Optim. and Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[13] Petitot J., Neurogéométrie de la vision: Modèles mathématiques et physiques des architectures fonctionnelles, Éd. École Polytech., Palaiseau, 2008
[14] Petitot J., Tondut Y., “Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux”, Math. Inform. et Sci. Hum., 145 (1999), 5–101 | MR
[15] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., The mathematical theory of optimal processes, Interscience, New York, 1962 | MR
[16] Reeds J.A., Shepp L.A., “Optimal paths for a car that goes both forwards and backwards”, Pacif. J. Math., 145:2 (1990), 367–393 | DOI | MR
[17] Sachkov Yu.L., “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: Control, Optim. and Calc. Var., 2009 | DOI
[18] Sachkov Yu.L., Cut time and optimal synthesis in sub-Riemannian problem on the group of motions of a plane, E-print, 2009, arXiv: 0903.0727