Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 249-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a time-dependent Schrödinger equation in which the spatial variable runs over a metric graph. The boundary conditions at the vertices of the graph imply the continuity of the function and the zero sum of the one-sided derivatives taken with some weights. In the semiclassical approximation, we describe a propagation of Gaussian packets on the graph that are localized at a point at the initial instant of time. The main focus is placed on the statistics of the behavior of asymptotic solutions as time increases. We show that the calculation of the number of quantum packets on a graph is related to the well-known number-theoretic problem of finding the number of integer points in an expanding simplex. We prove that the number of Gaussian packets on a finite compact graph grows polynomially. Several examples are considered. In a particular case, Gaussian packets are shown to be distributed on a graph uniformly with respect to the edge travel times.
@article{TRSPY_2010_270_a19,
     author = {V. L. Chernyshev},
     title = {Time-dependent {Schr\"odinger} equation: {Statistics} of the distribution of {Gaussian} packets on a~metric graph},
     journal = {Informatics and Automation},
     pages = {249--265},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a19/}
}
TY  - JOUR
AU  - V. L. Chernyshev
TI  - Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph
JO  - Informatics and Automation
PY  - 2010
SP  - 249
EP  - 265
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a19/
LA  - ru
ID  - TRSPY_2010_270_a19
ER  - 
%0 Journal Article
%A V. L. Chernyshev
%T Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph
%J Informatics and Automation
%D 2010
%P 249-265
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a19/
%G ru
%F TRSPY_2010_270_a19
V. L. Chernyshev. Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 249-265. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a19/

[1] Borovskikh A.V., Kopytin A.V., “O rasprostranenii voln po seti”, Sbornik statei aspirantov i studentov matematicheskogo fakulteta VGU, Voronezh. gos. un-t, Voronezh, 1999, 21–25

[2] Gerasimenko N.I., Pavlov B.S., “Zadacha rasseyaniya na nekompaktnykh grafakh”, TMF, 74:3 (1988), 345–359 | MR | Zbl

[3] Glotov N.V., Differentsialnye uravneniya na geometricheskikh grafakh s osobennostyami v koeffitsientakh, Dis. $\dots$ kand. fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 2007

[4] Glotov N.V., Pryadiev V.L., “Opisanie reshenii volnovogo uravneniya na konechnom i ogranichennom geometricheskom grafe pri uslovii transmissii tipa “zhidkogo” treniya”, Vestn. Voronezh. gos. un-ta. Fizika. Matematika, 2006, no. 2, 185–193

[5] Zavgorodnii M.G., “Spektralnaya polnota kornevykh funktsii kraevoi zadachi na grafe”, DAN, 335:3 (1994), 281–283 | MR

[6] Kopytin A.V., Pryadiev V.L., “Ob odnom predstavlenii resheniya volnovogo uravneniya na seti”, Sovremennye metody teorii funktsii i smezhnye problemy, Tez. dokl., Voronezh. gos. un-t, Voronezh, 2001, 313

[7] Maslov V.P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[8] Maslov V.P., Fedoryuk M.V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[9] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[10] Pokornyi Yu.V., Pryadiev V.L., Borovskikh A.V., “Volnovoe uravnenie na prostranstvennoi seti”, DAN, 388:1 (2003), 16–18 | MR | Zbl

[11] Pryadiev V.L., “Opisanie resheniya nachalno-kraevoi zadachi dlya volnovogo uravneniya na odnomernoi prostranstvennoi seti cherez funktsiyu Grina sootvetstvuyuschei kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Sovremennaya matematika i ee prilozheniya, 38, 2006, 82–94

[12] Chernyshev V.L., Shafarevich A.I., “Kvaziklassicheskii spektr operatora Shrëdingera na geometricheskom grafe”, Mat. zametki, 82:4 (2007), 606–620 | DOI | MR | Zbl

[13] Ali Mehmeti F., Nonlinear waves in networks, Math. Res., 80, Akad. Verlag, Berlin, 1994 | MR | Zbl

[14] Barvinok A., “Computing the Ehrhart quasi-polynomial of a rational simplex”, Math. Comput., 75 (2006), 1449–1466 | DOI | MR | Zbl

[15] Cattaneo C., Fontana L., “D'Alambert formula on finite one-dimensional networks”, J. Math. Anal. and Appl., 284:2 (2003), 403–424 | DOI | MR | Zbl

[16] Ehrhart E., “Sur les polyèdres rationnels homothétiques à $n$ dimensions”, C. r. Acad. sci. Paris, 254 (1962), 616–618 | MR | Zbl

[17] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. and Phys., 54 (2005), 77–115 | DOI | MR | Zbl

[18] Hardy G.H., Littlewood J.E., “Some problems of Diophantine approximation: The lattice-points of a right-angled triangle”, Proc. London Math. Soc. Ser. 2, 20 (1921), 15–36 | DOI

[19] Integer points in polyhedra—geometry, number theory, algebra, optimization, Contemp. Math., 374, Amer. Math. Soc., Providence (RI), 2005

[20] Kuchment P., “Quantum graphs: An introduction and a brief survey”, Analysis on graphs and its applications, Proc. Symp. Pure. Math., 77, Amer. Math. Soc., Providence (RI), 2008, 291–312 | DOI | MR | Zbl

[21] Kurasov P., Nowaczyk M., “Inverse spectral problem for quantum graphs”, J. Phys. A: Math. and Gen., 38 (2005), 4901–4915 | DOI | MR | Zbl

[22] Lumer G., “Connecting of local operators and evolution equations on networks”, Potential theory, Proc. Colloq. (Copenhagen, 1979), Lect. Notes Math., 787, Springer, Berlin, 1980, 219–234 | DOI | MR

[23] Skriganov M.M., “Ergodic theory on $\mathrm {SL}(n)$, Diophantine approximations and anomalies in the lattice point problem”, Invent. math., 132:1 (1998), 1–72 | DOI | MR | Zbl