Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2010_270_a17, author = {A. G. Sergeev}, title = {Adiabatic limit in the {Ginzburg--Landau} and {Seiberg--Witten} equations}, journal = {Informatics and Automation}, pages = {233--242}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a17/} }
A. G. Sergeev. Adiabatic limit in the Ginzburg--Landau and Seiberg--Witten equations. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 233-242. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a17/
[1] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Birkhäuser, Boston, 1980 | MR | Zbl
[2] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Warwick Univ., 1996 | MR
[3] Sergeev A.G., “Adiabatic limit in the Seiberg–Witten equations”, Geometry, topology, and mathematical physics, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence (RI), 2004, 281–295 | MR | Zbl
[4] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl
[5] Taubes C.H., “SW $\Rightarrow$ Gr: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl
[6] Taubes C.H., “Gr $\Rightarrow$ SW: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | MR | Zbl