Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a~finite number of orbits of heteroclinic tangency
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 198-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider diffeomorphisms of orientable surfaces with the nonwandering set consisting of a finite number of hyperbolic fixed points and the wandering set containing a finite number of heteroclinic orbits of transversal and nontransversal intersection. We distinguish a meaningful class of diffeomorphisms and present a complete topological invariant for this class. The invariant is a scheme consisting of a set of numerical parameters and a set of geometric objects.
@article{TRSPY_2010_270_a14,
     author = {T. M. Mitryakova and O. V. Pochinka},
     title = {Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a~finite number of orbits of heteroclinic tangency},
     journal = {Informatics and Automation},
     pages = {198--219},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a14/}
}
TY  - JOUR
AU  - T. M. Mitryakova
AU  - O. V. Pochinka
TI  - Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a~finite number of orbits of heteroclinic tangency
JO  - Informatics and Automation
PY  - 2010
SP  - 198
EP  - 219
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a14/
LA  - ru
ID  - TRSPY_2010_270_a14
ER  - 
%0 Journal Article
%A T. M. Mitryakova
%A O. V. Pochinka
%T Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a~finite number of orbits of heteroclinic tangency
%J Informatics and Automation
%D 2010
%P 198-219
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a14/
%G ru
%F TRSPY_2010_270_a14
T. M. Mitryakova; O. V. Pochinka. Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a~finite number of orbits of heteroclinic tangency. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 198-219. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a14/

[1] Belitskii G.R., Normalnye formy, invarianty i lokalnye otobrazheniya, Nauk. dumka, Kiev, 1979 | MR | Zbl

[2] Bezdenezhnykh A.N., Grines V.Z., “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Sel. Math. Sov., 11:1 (1992), 1–11 | MR | MR | Zbl

[3] Bezdenezhnykh A.N., Grines V.Z., “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. II”, Sel. Math. Sov., 11:1 (1992), 13–17 | MR | MR | Zbl

[4] Bezdenezhnykh A.N., Grines V.Z., “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Sel. Math. Sov., 11:1 (1992), 19–23 | MR | MR | Zbl

[5] Bonatti Kh., Grines V.Z, Pochinka O.V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl

[6] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. math. France, Paris, 1998 | MR | Zbl

[7] Gavrilov N.K., Shilnikov L.P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sistemam s negruboi gomoklinicheskoi krivoi. I, II”, Mat. sb., 88:4 (1972), 475–492 ; 90:1 (1973), 139–156 | MR | Zbl | MR | Zbl

[8] Grines V.Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl

[9] Grines V.Z., “O topologicheskoi klassifikatsii strukturno ustoichivykh diffeomorfizmov poverkhnostei s odnomernymi attraktorami i repellerami”, Mat. sb., 188:4 (1997), 57–94 | DOI | MR | Zbl

[10] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR

[11] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[12] Keldysh L.V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966

[13] Langevin R., “Quelques nouveaux invariants des difféomorphismes Morse–Smale d'une surface”, Ann. Inst. Fourier, 43:1 (1993), 265–278 | DOI | MR | Zbl

[14] de Melo W., “Moduli of stability of two-dimensional diffeomorphisms”, Topology, 19 (1980), 9–21 | DOI | MR | Zbl

[15] de Melo W., van Strien S.J., “Diffeomorphisms on surfaces with a finite namber of moduli”, Ergodic Theory and Dyn. Syst., 7 (1987), 415–462 | MR | Zbl

[16] Mitryakova T.M., Pochinka O.V., “Klassifikatsiya prosteishikh diffeomorfizmov sfery $\mathbf S^2$ s odnim modulem ustoichivosti”, Sovremennaya matematika i ee prilozheniya, 54, 2008, 99–113

[17] Newhouse S., Palis J., “Bifurcations of Morse–Smale dynamical systems”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador (Brasil), 1971), ed. Ed. by M. Peixoto, Acad. Press, New York, 1973, 303–366 | MR

[18] Nielsen J., “Die Struktur periodischer Transformationen von Flächen”, Danske Vid. Selsk. Mat.-Fys. Medd., 15 (1937), 1–77

[19] Palis J., “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR

[20] Palis J., “A differentiable invariant of topological conjugacies and moduli of stability”, Astérisque, 51, 1978, 335–346 | MR | Zbl

[21] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Mir, M., 1986 | MR

[22] Peixoto M.M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador (Brasil), 1971), ed. Ed. by M. Peixoto, Acad. Press, New York, 1973, 389–419 | MR

[23] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[24] Shilnikov L.P., Shilnikov A.L., Turaev D.V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, In-t kompyut. issled., Moskva; Izhevsk, 2004

[25] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR | Zbl | MR