Spectral properties of a~fourth-order differential operator with integrable coefficients
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 188-197

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study spectral properties of differential operators with integrable coefficients and a constant weight function. We analyze the asymptotic behavior of solutions to a differential equation with integrable coefficients for large values of the spectral parameter. To find the asymptotic behavior of solutions, we reduce the differential equation to a Volterra integral equation. We also obtain asymptotic formulas for the eigenvalues of some boundary value problems related to the differential operator under consideration.
@article{TRSPY_2010_270_a13,
     author = {S. I. Mitrokhin},
     title = {Spectral properties of a~fourth-order differential operator with integrable coefficients},
     journal = {Informatics and Automation},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a13/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Spectral properties of a~fourth-order differential operator with integrable coefficients
JO  - Informatics and Automation
PY  - 2010
SP  - 188
EP  - 197
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a13/
LA  - ru
ID  - TRSPY_2010_270_a13
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Spectral properties of a~fourth-order differential operator with integrable coefficients
%J Informatics and Automation
%D 2010
%P 188-197
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a13/
%G ru
%F TRSPY_2010_270_a13
S. I. Mitrokhin. Spectral properties of a~fourth-order differential operator with integrable coefficients. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 188-197. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a13/