Singularities of elliptic mixed boundary problems. Application to boundary stabilization of hyperbolic systems
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 177-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

For elliptic partial differential equations, mixed boundary conditions generate singularities in the solution, mainly when the boundary of the domain is connected. We here consider two classical cases: the Laplace equation and the Lamé system. The knowledge of singularities allows us to construct adapted Rellich relations. These are useful in the problem of boundary stabilization of the wave equation and the elastodynamic system, respectively, when using the multiplier method.
@article{TRSPY_2010_270_a12,
     author = {J.-P. Loh\'eac},
     title = {Singularities of elliptic mixed boundary problems. {Application} to boundary stabilization of hyperbolic systems},
     journal = {Informatics and Automation},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a12/}
}
TY  - JOUR
AU  - J.-P. Lohéac
TI  - Singularities of elliptic mixed boundary problems. Application to boundary stabilization of hyperbolic systems
JO  - Informatics and Automation
PY  - 2010
SP  - 177
EP  - 187
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a12/
LA  - en
ID  - TRSPY_2010_270_a12
ER  - 
%0 Journal Article
%A J.-P. Lohéac
%T Singularities of elliptic mixed boundary problems. Application to boundary stabilization of hyperbolic systems
%J Informatics and Automation
%D 2010
%P 177-187
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a12/
%G en
%F TRSPY_2010_270_a12
J.-P. Lohéac. Singularities of elliptic mixed boundary problems. Application to boundary stabilization of hyperbolic systems. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 177-187. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a12/

[1] Alabau F., Komornik V., “Boundary observability, controllability, and stabilization of linear elastodynamic systems”, SIAM J. Control and Optim., 37:2 (1999), 521–542 | DOI | MR | Zbl

[2] Bey R., Heminna A., Lohéac J.-P., “Boundary stabilization of the linear elastodynamic system by a Lyapunov-type method”, Rev. Mat. Complut., 16:2 (2003), 417–441 | MR | Zbl

[3] Bey R., Lohéac J.-P., Moussaoui M., “Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation”, J. math. pures et appl., 78 (1999), 1043–1067 | DOI | MR | Zbl

[4] Brossard R., Lohéac J.-P., “Stabilisation frontière du système élastodynamique dans un polygone plan”, C. r. Math. Acad. sci. Paris, 338 (2004), 213–218 | DOI | MR | Zbl

[5] Brossard R., Lohéac J.-P., “Boundary stabilization of elastodynamic systems. Part I: Rellich-type relations for a problem in elasticity involving singularities”, Acta appl. math., 109:3 (2010), 875–901 | DOI | MR | Zbl

[6] Brossard R., Lohéac J.-P., “Boundary stabilization of elastodynamic systems. II: The case of a linear feedback”, J. Dyn. and Control Syst., 16:3 (2010), 355–375 | DOI | MR | Zbl

[7] Grisvard P., Elliptic problems in nonsmooth domains, Monogr. and Stud. Math., 24, Pitman, Boston, 1985 | MR | Zbl

[8] Grisvard P., “Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités”, J. math. pures et appl., 68 (1989), 215–259 | MR | Zbl

[9] Guesmia A., “Observability, controllability and boundary stabilization of some linear elasticity systems”, Acta sci. math., 64:1–2 (1998), 109–119 | MR | Zbl

[10] Guesmia A., “On the decay estimates for elasticity systems with some localized dissipations”, Asymptotic Anal., 22:1 (2000), 1–13 | MR | Zbl

[11] Haraux A., Semi-groupes linéaires et équations d'évolution linéaires périodiques, Preprint 78011, L.A.N. Univ. P. et M. Curie, Paris, 1978

[12] Ho L.F., “Observabilité frontière de l'équation des ondes”, C. r. Acad. sci. Paris. Sér. 1, 302 (1986), 443–446 | MR | Zbl

[13] Horn M.A., “Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity”, J. Math. Anal. and Appl., 223 (1998), 126–150 | DOI | MR | Zbl

[14] Komornik V., Exact controllability and stabilization: The multiplier method, Masson, Paris, 1994 | MR | Zbl

[15] Komornik V., “Boundary stabilization of isotropic elasticity systems”, Control of partial differential equations and applications, Lect. Notes Pure and Appl. Math., 174, M. Dekker, New York, 1996, 135–146 | MR | Zbl

[16] Komornik V., Zuazua E., “A direct method for the boundary stabilization of the wave equation”, J. math. pures et appl., 69 (1990), 33–54 | MR | Zbl

[17] Lagnese J., “Boundary stabilization of linear elastodynamic systems”, SIAM J. Control and Optim., 21 (1983), 968–984 | DOI | MR | Zbl

[18] Lagnese J.E., “Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary”, Nonlin. Anal. Theory, Meth. and Appl., 16 (1991), 35–54 | DOI | MR | Zbl

[19] Mérouani B., “Solutions singulières du système de l'élasticité dans un polygone pour différentes conditions aux limites”, Maghreb Math. Rev., 5:1–2 (1996), 95–112 | MR

[20] Moussaoui M., “Singularités des solutions du problème mêlé, contrôlabilité exacte et stabilisation frontière”, ESAIM Proc., 2 (1997), 195–201 | DOI | MR | Zbl

[21] Shamir E., “Regularization of mixed second-order elliptic problems”, Israel J. Math., 6 (1968), 150–168 | DOI | MR | Zbl