On decay of the Schr\"odinger resolvent
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 170-176

Voir la notice de l'article provenant de la source Math-Net.Ru

We strengthen the known Agmon–Jensen–Kato decay of the resolvent for a special case of the Schrödinger equation in arbitrary dimension $n\ge1$. The decay is of crucial importance in applications to linear and nonlinear hyperbolic PDEs.
@article{TRSPY_2010_270_a11,
     author = {E. A. Kopylova},
     title = {On decay of the {Schr\"odinger} resolvent},
     journal = {Informatics and Automation},
     pages = {170--176},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/}
}
TY  - JOUR
AU  - E. A. Kopylova
TI  - On decay of the Schr\"odinger resolvent
JO  - Informatics and Automation
PY  - 2010
SP  - 170
EP  - 176
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/
LA  - ru
ID  - TRSPY_2010_270_a11
ER  - 
%0 Journal Article
%A E. A. Kopylova
%T On decay of the Schr\"odinger resolvent
%J Informatics and Automation
%D 2010
%P 170-176
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/
%G ru
%F TRSPY_2010_270_a11
E. A. Kopylova. On decay of the Schr\"odinger resolvent. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 170-176. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/