On decay of the Schr\"odinger resolvent
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 170-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

We strengthen the known Agmon–Jensen–Kato decay of the resolvent for a special case of the Schrödinger equation in arbitrary dimension $n\ge1$. The decay is of crucial importance in applications to linear and nonlinear hyperbolic PDEs.
@article{TRSPY_2010_270_a11,
     author = {E. A. Kopylova},
     title = {On decay of the {Schr\"odinger} resolvent},
     journal = {Informatics and Automation},
     pages = {170--176},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/}
}
TY  - JOUR
AU  - E. A. Kopylova
TI  - On decay of the Schr\"odinger resolvent
JO  - Informatics and Automation
PY  - 2010
SP  - 170
EP  - 176
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/
LA  - ru
ID  - TRSPY_2010_270_a11
ER  - 
%0 Journal Article
%A E. A. Kopylova
%T On decay of the Schr\"odinger resolvent
%J Informatics and Automation
%D 2010
%P 170-176
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/
%G ru
%F TRSPY_2010_270_a11
E. A. Kopylova. On decay of the Schr\"odinger resolvent. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 170-176. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a11/

[1] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 2 (1975), 151–218 | MR | Zbl

[2] Jensen A., “Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2(\mathbf R^m)$, $m\ge 5$”, Duke Math. J., 47 (1980), 57–80 | DOI | MR | Zbl

[3] Jensen A., “Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2(\mathbf R^4)$”, J. Math. Anal. and Appl., 101 (1984), 397–422 | DOI | MR | Zbl

[4] Jensen A., Kato T., “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46 (1979), 583–611 | DOI | MR | Zbl

[5] Murata M., “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49 (1982), 10–56 | DOI | MR | Zbl

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982

[7] Vainberg B.R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982 | MR | Zbl