Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2010_270_a0, author = {F. Alharbi and V. Zakalyukin}, title = {Quasi corner singularities}, journal = {Informatics and Automation}, pages = {7--20}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a0/} }
F. Alharbi; V. Zakalyukin. Quasi corner singularities. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 7-20. http://geodesic.mathdoc.fr/item/TRSPY_2010_270_a0/
[1] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004
[2] Siersma D., “Singularities of functions on boundaries, corners, etc.”, Quart. J. Math. Oxford. Ser. 2, 32:1 (1981), 119–127 | DOI | MR | Zbl
[3] Kryukovskii A.S., Rastyagaev D.V., “Klassifikatsiya unimodalnykh i bimodalnykh uglovykh osobennostei”, Funkts. analiz i ego pril., 26:3 (1992), 77–79 | MR
[4] Zakalyukin V.M., “Quasi singularities”, Geometry and topology of caustics—Caustics'06, Proc. 3rd Banach Center Symp. (Warsaw (Poland), 2006), Banach Center Publ., 82, Pol. Acad. Sci., Inst. Math., Warsaw, 2008, 215–225 | DOI | MR | Zbl
[5] Zakalyukin V.M., “Kvaziproektsii”, Tr. MIAN, 259, 2007, 282–290 | MR | Zbl
[6] Alharbi F., Versal deformation and discriminant of simple quasi singularities, MSc Thesis, Liverpool Univ., Liverpool, 2007
[7] Zakalyukin V.M., “Perestroiki frontov, kaustik, zavisyaschikh ot parametra, versalnost otobrazhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 56–93 | MR
[8] Janeczko S., “Generalized Luneburg canonical varieties and vector fields on quasicaustics”, J. Math. Phys., 31:4 (1990), 997–1009 | DOI | MR | Zbl