Greedy approximation of characteristic functions
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 254-264

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the problem of sparse representation of domains in $\mathbb R^d$. We demonstrate how the recently developed general theory of greedy approximation in Banach spaces can be used in this problem. The use of greedy approximation has two important advantages: (1) it works for an arbitrary dictionary of sets used for sparse representation and (2) the method of approximation does not depend on smoothness properties of the domains and automatically provides a near optimal rate of approximation for domains with different smoothness properties. We also give some lower estimates of the approximation error and discuss a specific greedy algorithm for approximation of convex domains in $\mathbb R^2$.
@article{TRSPY_2010_269_a20,
     author = {V. N. Temlyakov},
     title = {Greedy approximation of characteristic functions},
     journal = {Informatics and Automation},
     pages = {254--264},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a20/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Greedy approximation of characteristic functions
JO  - Informatics and Automation
PY  - 2010
SP  - 254
EP  - 264
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a20/
LA  - en
ID  - TRSPY_2010_269_a20
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Greedy approximation of characteristic functions
%J Informatics and Automation
%D 2010
%P 254-264
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a20/
%G en
%F TRSPY_2010_269_a20
V. N. Temlyakov. Greedy approximation of characteristic functions. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 254-264. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a20/