On the second moduli of continuity
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 150-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an inequality for the second moduli of continuity of continuous functions. Applying this inequality, we construct a nonnegative nonincreasing continuous function $\omega$ on $[0,+\infty)$ that vanishes at zero and is such that the function $\omega(\delta)/\delta^2$ decreases on $(0,+\infty)$ while $\omega$ is not asymptotically (as $\delta\to0$) equivalent to the second modulus of continuity of any continuous function.
@article{TRSPY_2010_269_a11,
     author = {S. V. Konyagin},
     title = {On the second moduli of continuity},
     journal = {Informatics and Automation},
     pages = {150--152},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On the second moduli of continuity
JO  - Informatics and Automation
PY  - 2010
SP  - 150
EP  - 152
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a11/
LA  - ru
ID  - TRSPY_2010_269_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On the second moduli of continuity
%J Informatics and Automation
%D 2010
%P 150-152
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a11/
%G ru
%F TRSPY_2010_269_a11
S. V. Konyagin. On the second moduli of continuity. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 150-152. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a11/