Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 143-149
Voir la notice de l'article provenant de la source Math-Net.Ru
Explicit formulas are obtained for the maximum possible values of the derivatives $f^{(k)}(x)$, $x\in(-1,1)$, $k\in\{0,1,\dots,r-1\}$, for functions $f$ that vanish together with their (absolutely continuous) derivatives of order up to $\le r-1$ at the points $\pm1$ and are such that $\|f^{(r)}\|_{L_2(-1,1)}\le1$. As a corollary, it is shown that the first eigenvalue $\lambda_{1,r}$ of the operator $(-D^2)^r$ with these boundary conditions is $\sqrt2(2r)!(1+O(1/r))$, $r\to\infty$.
@article{TRSPY_2010_269_a10,
author = {G. A. Kalyabin},
title = {Sharp estimates for derivatives of functions in the {Sobolev} classes $\mathring W_2^r(-1,1)$},
journal = {Informatics and Automation},
pages = {143--149},
publisher = {mathdoc},
volume = {269},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a10/}
}
TY - JOUR AU - G. A. Kalyabin TI - Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$ JO - Informatics and Automation PY - 2010 SP - 143 EP - 149 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a10/ LA - ru ID - TRSPY_2010_269_a10 ER -
G. A. Kalyabin. Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 143-149. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a10/