Wavelet approximation and Fourier widths of classes of periodic functions of several variables.~I
Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 8-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain characterizations (and prove the corresponding equivalence of norms) of function spaces $\mathbf B^{sm}_{pq}(\mathbb I^k)$ and $\mathbf L^{sm}_{pq}(\mathbb I^k)$ of Nikol'skii–Besov and Lizorkin–Triebel types, respectively, in terms of representations of functions in these spaces by Fourier series with respect to a multiple system $\mathcal W^\mathbb I_m$ of Meyer wavelets and in terms of sequences of the Fourier coefficients with respect to this system. We establish order-sharp estimates for the approximation of functions in $B^{sm}_{pq}(\mathbb I^k)$ and $L^{sm}_{pq}(\mathbb I^k)$ by special partial sums of these series in the metric of $L_r(\mathbb I^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$, and $\mathbb I= \mathbb R$ or $\mathbb T$). In the periodic case, we study the Fourier widths of these function classes.
@article{TRSPY_2010_269_a1,
     author = {D. B. Bazarkhanov},
     title = {Wavelet approximation and {Fourier} widths of classes of periodic functions of several {variables.~I}},
     journal = {Informatics and Automation},
     pages = {8--30},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Wavelet approximation and Fourier widths of classes of periodic functions of several variables.~I
JO  - Informatics and Automation
PY  - 2010
SP  - 8
EP  - 30
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a1/
LA  - ru
ID  - TRSPY_2010_269_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Wavelet approximation and Fourier widths of classes of periodic functions of several variables.~I
%J Informatics and Automation
%D 2010
%P 8-30
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a1/
%G ru
%F TRSPY_2010_269_a1
D. B. Bazarkhanov. Wavelet approximation and Fourier widths of classes of periodic functions of several variables.~I. Informatics and Automation, Function theory and differential equations, Tome 269 (2010), pp. 8-30. http://geodesic.mathdoc.fr/item/TRSPY_2010_269_a1/