Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation
Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 137-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a boundary value problem for the spatially one-dimensional Swift–Hohenberg equation with zero Neumann boundary conditions at the endpoints of a finite interval. We establish that as the length $l$ of the interval increases while the supercriticality $\varepsilon$ is fixed and sufficiently small, the number of coexisting stable equilibrium states in this problem indefinitely increases; i.e., the well-known buffer phenomenon is observed. A similar result is obtained in the $2l$-periodic case.
@article{TRSPY_2010_268_a10,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Buffer phenomenon in the spatially one-dimensional {Swift--Hohenberg} equation},
     journal = {Informatics and Automation},
     pages = {137--154},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a10/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation
JO  - Informatics and Automation
PY  - 2010
SP  - 137
EP  - 154
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a10/
LA  - ru
ID  - TRSPY_2010_268_a10
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation
%J Informatics and Automation
%D 2010
%P 137-154
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a10/
%G ru
%F TRSPY_2010_268_a10
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer phenomenon in the spatially one-dimensional Swift--Hohenberg equation. Informatics and Automation, Differential equations and topology. I, Tome 268 (2010), pp. 137-154. http://geodesic.mathdoc.fr/item/TRSPY_2010_268_a10/