Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_267_a20, author = {L. Stolovitch}, title = {Rigidity of {Poisson} {Structures}}, journal = {Informatics and Automation}, pages = {266--279}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/} }
L. Stolovitch. Rigidity of Poisson Structures. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 266-279. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/
[1] Arnold V. I., “Zamechaniya o puassonovykh strukturakh na ploskosti i drugikh stepenyakh form ob'ema”, Tr. sem. im. I. G. Petrovskogo, 12, 1987, 37–46 | MR | Zbl
[2] Arnol'd V. I., Mathematical methods of classical mechanics, Grad. Texts Math., 60, Springer, New York, 1989 | DOI | MR | MR
[3] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, V. 1, Monogr. Math., 82, Birkhäuser, Boston, 1985 | MR | MR | Zbl
[4] Cartan H., Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, Paris, 1967 | MR | Zbl
[5] Conn J. F., “Normal forms for analytic Poisson structures”, Ann. Math., 119 (1984), 577–601 | DOI | MR | Zbl
[6] Dufour J.-P., “Linéarisation de certaines structures de Poisson”, J. Diff. Geom., 32 (1990), 415–428 | MR | Zbl
[7] Dufour J.-P., “Hyperbolic actions of $\mathbb R^p$ on Poisson manifolds”, Symplectic geometry, groupoids, and integrable systems, eds. P. Dazord, A. Weinstein, Springer, New York, 1991, 137–150 | DOI | MR
[8] Dufour J.-P., Wade A., “Formes normales de structures de Poisson ayant un 1-jet nul en un point”, J. Geom. and Phys., 26:1–2 (1998), 79–96 | DOI | MR | Zbl
[9] Dufour J.-P., Zhitomirskii M., “Classification of nonresonant Poisson structures”, J. London Math. Soc., 60:2 (1999), 935–950 | DOI | MR | Zbl
[10] Dufour J.-P., Nguyen Tien Zung, “Nondegeneracy of the Lie algebra $\mathrm{aff}(n)$”, C. r. Math. Acad. sci. Paris, 335:12 (2002), 1043–1046 | DOI | MR | Zbl
[11] Dufour J.-P., Nguyen Tien Zung, Poisson structures and their normal forms, Progr. Math., 242, Birkhäuser, Basel, 2005 | MR | Zbl
[12] Fischer E., “Über die Differentiationsprozesse der Algebra”, J. Math., 148 (1917), 1–78 | Zbl
[13] Lohrmann P., “Sur la normalisation holomorphe de structures de Poisson à 1-jet nul”, C. r. Math. Acad. sci. Paris, 340:11 (2005), 823–826 | DOI | MR | Zbl
[14] Lohrmann P., Normalisation holomorphe et sectorielle de structures de Poisson, PhD Thes., Univ. Paul Sabatier, Toulouse, 2006
[15] Lombardi E., Stolovitch L., Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, analytic invariant sets and exponentially small approximation, E-print , 2009 http://www.math.univ-toulouse.fr/~lombardi/LombStolo.pdf
[16] Lombardi E., Stolovitch L., “Forme normale de perturbation de champs de vecteurs quasi-homogènes”, C. r. Math. Acad. sci. Paris, 347:3–4 (2009), 143–146 | DOI | MR | Zbl
[17] Lychagina O. V., “Normalnye formy puassonovykh struktur”, Mat. zametki, 61:2 (1997), 220–235 | DOI | MR | Zbl
[18] Shapiro H. S., “An algebraic theorem of E. Fischer, and the holomorphic Goursat problem”, Bull. London Math. Soc., 21:6 (1989), 513–537 | DOI | MR | Zbl
[19] Stolovitch L., “Singular complete integrabilty”, Publ. Math. IHES, 91 (2000), 133–210 | DOI | MR | Zbl
[20] Stolovitch L., “Sur les structures de Poisson singulières”, Ergodic Theory and Dyn. Syst., 24:5 (2004), 1833–1863 | DOI | MR | Zbl
[21] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl