Rigidity of Poisson Structures
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 266-279

Voir la notice de l'article provenant de la source Math-Net.Ru

We study germs of analytic Poisson structures which are suitable perturbations of a quasihomogeneous Poisson structure in a neighborhood of the origin of $\mathbb R^n$ or $\mathbb C^n$, a fixed point of the Poisson structures. We define a “diophantine condition” relative to the quasihomogeneous initial part $\mathcal L$ which ensures that such a good perturbation of $\mathcal L$ which is formally conjugate to $\mathcal L$ is also analytically conjugate to it.
@article{TRSPY_2009_267_a20,
     author = {L. Stolovitch},
     title = {Rigidity of {Poisson} {Structures}},
     journal = {Informatics and Automation},
     pages = {266--279},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/}
}
TY  - JOUR
AU  - L. Stolovitch
TI  - Rigidity of Poisson Structures
JO  - Informatics and Automation
PY  - 2009
SP  - 266
EP  - 279
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/
LA  - en
ID  - TRSPY_2009_267_a20
ER  - 
%0 Journal Article
%A L. Stolovitch
%T Rigidity of Poisson Structures
%J Informatics and Automation
%D 2009
%P 266-279
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/
%G en
%F TRSPY_2009_267_a20
L. Stolovitch. Rigidity of Poisson Structures. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 266-279. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/