Rigidity of Poisson Structures
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 266-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study germs of analytic Poisson structures which are suitable perturbations of a quasihomogeneous Poisson structure in a neighborhood of the origin of $\mathbb R^n$ or $\mathbb C^n$, a fixed point of the Poisson structures. We define a “diophantine condition” relative to the quasihomogeneous initial part $\mathcal L$ which ensures that such a good perturbation of $\mathcal L$ which is formally conjugate to $\mathcal L$ is also analytically conjugate to it.
@article{TRSPY_2009_267_a20,
     author = {L. Stolovitch},
     title = {Rigidity of {Poisson} {Structures}},
     journal = {Informatics and Automation},
     pages = {266--279},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/}
}
TY  - JOUR
AU  - L. Stolovitch
TI  - Rigidity of Poisson Structures
JO  - Informatics and Automation
PY  - 2009
SP  - 266
EP  - 279
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/
LA  - en
ID  - TRSPY_2009_267_a20
ER  - 
%0 Journal Article
%A L. Stolovitch
%T Rigidity of Poisson Structures
%J Informatics and Automation
%D 2009
%P 266-279
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/
%G en
%F TRSPY_2009_267_a20
L. Stolovitch. Rigidity of Poisson Structures. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 266-279. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a20/

[1] Arnold V. I., “Zamechaniya o puassonovykh strukturakh na ploskosti i drugikh stepenyakh form ob'ema”, Tr. sem. im. I. G. Petrovskogo, 12, 1987, 37–46 | MR | Zbl

[2] Arnol'd V. I., Mathematical methods of classical mechanics, Grad. Texts Math., 60, Springer, New York, 1989 | DOI | MR | MR

[3] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, V. 1, Monogr. Math., 82, Birkhäuser, Boston, 1985 | MR | MR | Zbl

[4] Cartan H., Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, Paris, 1967 | MR | Zbl

[5] Conn J. F., “Normal forms for analytic Poisson structures”, Ann. Math., 119 (1984), 577–601 | DOI | MR | Zbl

[6] Dufour J.-P., “Linéarisation de certaines structures de Poisson”, J. Diff. Geom., 32 (1990), 415–428 | MR | Zbl

[7] Dufour J.-P., “Hyperbolic actions of $\mathbb R^p$ on Poisson manifolds”, Symplectic geometry, groupoids, and integrable systems, eds. P. Dazord, A. Weinstein, Springer, New York, 1991, 137–150 | DOI | MR

[8] Dufour J.-P., Wade A., “Formes normales de structures de Poisson ayant un 1-jet nul en un point”, J. Geom. and Phys., 26:1–2 (1998), 79–96 | DOI | MR | Zbl

[9] Dufour J.-P., Zhitomirskii M., “Classification of nonresonant Poisson structures”, J. London Math. Soc., 60:2 (1999), 935–950 | DOI | MR | Zbl

[10] Dufour J.-P., Nguyen Tien Zung, “Nondegeneracy of the Lie algebra $\mathrm{aff}(n)$”, C. r. Math. Acad. sci. Paris, 335:12 (2002), 1043–1046 | DOI | MR | Zbl

[11] Dufour J.-P., Nguyen Tien Zung, Poisson structures and their normal forms, Progr. Math., 242, Birkhäuser, Basel, 2005 | MR | Zbl

[12] Fischer E., “Über die Differentiationsprozesse der Algebra”, J. Math., 148 (1917), 1–78 | Zbl

[13] Lohrmann P., “Sur la normalisation holomorphe de structures de Poisson à 1-jet nul”, C. r. Math. Acad. sci. Paris, 340:11 (2005), 823–826 | DOI | MR | Zbl

[14] Lohrmann P., Normalisation holomorphe et sectorielle de structures de Poisson, PhD Thes., Univ. Paul Sabatier, Toulouse, 2006

[15] Lombardi E., Stolovitch L., Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, analytic invariant sets and exponentially small approximation, E-print , 2009 http://www.math.univ-toulouse.fr/~lombardi/LombStolo.pdf

[16] Lombardi E., Stolovitch L., “Forme normale de perturbation de champs de vecteurs quasi-homogènes”, C. r. Math. Acad. sci. Paris, 347:3–4 (2009), 143–146 | DOI | MR | Zbl

[17] Lychagina O. V., “Normalnye formy puassonovykh struktur”, Mat. zametki, 61:2 (1997), 220–235 | DOI | MR | Zbl

[18] Shapiro H. S., “An algebraic theorem of E. Fischer, and the holomorphic Goursat problem”, Bull. London Math. Soc., 21:6 (1989), 513–537 | DOI | MR | Zbl

[19] Stolovitch L., “Singular complete integrabilty”, Publ. Math. IHES, 91 (2000), 133–210 | DOI | MR | Zbl

[20] Stolovitch L., “Sur les structures de Poisson singulières”, Ergodic Theory and Dyn. Syst., 24:5 (2004), 1833–1863 | DOI | MR | Zbl

[21] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl