Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 226-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of $k$-potential submanifolds in pseudo-Euclidean spaces and prove that for an arbitrary positive integer $k$ and an arbitrary nonnegative integer $p$, each $N$-dimensional Frobenius manifold can always be locally realized as an $N$-dimensional $k$-potential submanifold in $((k+1)N+p)$-dimensional pseudo-Euclidean spaces of certain signatures. For $k=1$ this construction was proposed by the present author in a previous paper (2006). The realization of concrete Frobenius manifolds is reduced to solving a consistent linear system of second-order partial differential equations.
@article{TRSPY_2009_267_a17,
     author = {O. I. Mokhov},
     title = {Realization of {Frobenius} {Manifolds} as {Submanifolds} in {Pseudo-Euclidean} {Spaces}},
     journal = {Informatics and Automation},
     pages = {226--244},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a17/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces
JO  - Informatics and Automation
PY  - 2009
SP  - 226
EP  - 244
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a17/
LA  - ru
ID  - TRSPY_2009_267_a17
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces
%J Informatics and Automation
%D 2009
%P 226-244
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a17/
%G ru
%F TRSPY_2009_267_a17
O. I. Mokhov. Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 226-244. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a17/

[1] Mokhov O. I., “Teoriya podmnogoobrazii, uravneniya assotsiativnosti dvumernykh topologicheskikh kvantovykh teorii polya i frobeniusovy mnogoobraziya”, TMF, 152:2 (2007), 368–376 ; arxiv: math/0610933 | DOI | MR | Zbl

[2] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 ; arxiv: hep-th/9407018 | DOI | MR | Zbl

[3] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B, 340 (1990), 281–332 | DOI | MR

[4] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in differential geometry, V. 1: Proc. Conf. on geometry and topology (Cambridge, MA, 1990), Amer. Math. Soc., Providence, RI, 1991, 243–310 | MR

[5] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR

[6] Mokhov O. I., “Submanifolds in pseudo-Euclidean spaces and Dubrovin–Frobenius structures”, Differential geometry and its applications, Proc. 10th Intern. Conf. (Olomouc, Czech Republic, Aug. 27–31, 2007), World Sci., Singapore, 2008, 515–526 | DOI | MR | Zbl

[7] Mokhov O. I., “Dvoistvennost v spetsialnom klasse podmnogoobrazii i frobeniusovy mnogoobraziya”, UMN, 63:2 (2008), 177–178 | DOI | Zbl

[8] Mokhov O. I., “O soglasovannykh potentsialnykh deformatsiyakh frobeniusovykh algebr i uravneniyakh assotsiativnosti”, UMN, 53:2 (1998), 153–154 | DOI | MR | Zbl

[9] Mokhov O., “Compatible Poisson structures of hydrodynamic type and the equations of associativity in two-dimensional topological field theory \”, Rep. Math. Phys., 43:1–2 (1999), 247–256 | DOI | MR | Zbl

[10] Mokhov O. I., “Soglasovannye puassonovy struktury gidrodinamicheskogo tipa i uravneniya assotsiativnosti”, Tr. MIAN, 225, 1999, 284–300 | MR | Zbl

[11] Mokhov O. I., “Sistemy integralov v involyutsii i uravneniya assotsiativnosti”, UMN, 61:3 (2006), 175–176 | DOI | MR | Zbl

[12] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Commun. Math. Phys., 164 (1994), 525–562 | DOI | MR | Zbl

[13] Mokhov O., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in topology and mathematical physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 121–151 ; arxiv: hep-th/9503076 | MR | Zbl

[14] Mokhov O., “Poisson and symplectic geometry on loop spaces of smooth manifolds”, Geometry from the Pacific Rim, Proc. Pacific Rim Geometry Conf. (National Univ. Singapore, Dec. 12–17, 1994), eds. A. J. Berrick, B. Loo, H.-Y. Wang, W. de Gruyter, Berlin, 1997, 285–309 | MR | Zbl

[15] Mokhov O. I., “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl

[16] Mokhov O. I., Simplekticheskaya i puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, Inst. kompyut. issled., M.–Izhevsk, 2004 | MR

[17] Mokhov O. I., “Nelokalnye gamiltonovy operatory gidrodinamicheskogo tipa s ploskimi metrikami, integriruemye ierarkhii i uravneniya assotsiativnosti”, Funkts. analiz i ego pril., 40:1 (2006), 14–29 ; arxiv: math/0406292 | DOI | MR | Zbl

[18] Mokhov O. I., “Nelokalnye gamiltonovy operatory gidrodinamicheskogo tipa s ploskimi metrikami i uravneniya assotsiativnosti”, UMN, 59:1 (2004), 187–188 | DOI | MR | Zbl

[19] Sym A., “Soliton surfaces”, Lett. Nuovo Cimento, 33:12 (1982), 394–400 | DOI | MR

[20] Sym A., “Soliton surfaces and their applications (soliton geometry from spectral problems)”, Geometric aspects of the Einstein equations and integrable systems, Lect. Notes Phys., 239, Springer, Berlin, 1985, 154–231 | DOI | MR

[21] Savelev M. V., “Zadacha klassifikatsii tochno integriruemykh vlozhenii dvumernykh mnogoobrazii i koeffitsienty tretikh fundamentalnykh form”, TMF, 60:1 (1984), 9–23 | MR | Zbl

[22] Barbashov B. M., Nesterenko V. V., “Geometricheskii analiz nelineinykh uravnenii v teorii relyativistskoi struny”, EChAYa, 15:5 (1984), 1032–1072

[23] Bobenko A. I., “Integriruemye poverkhnosti”, Funkts. analiz i ego pril., 24:3 (1990), 68–69 | MR | Zbl

[24] Fokas A. S., Gelfand I. M., “Surfaces on Lie groups, on Lie algebras, and their integrability”, Commun. Math. Phys., 177 (1996), 203–220 | DOI | MR | Zbl