Diffeomorphisms Preserving Symplectic Data on Submanifolds
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 182-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize general symplectic manifolds and their structure groups through a family of isotropic or symplectic submanifolds and their diffeomorphic invariance. In this way we obtain a complete geometric characterization of symplectic diffeomorphisms and a reinterpretation of symplectomorphisms as diffeomorphisms acting purely on isotropic or symplectic submanifolds.
@article{TRSPY_2009_267_a13,
     author = {S. Janeczko and Z. Jelonek},
     title = {Diffeomorphisms {Preserving} {Symplectic} {Data} on {Submanifolds}},
     journal = {Informatics and Automation},
     pages = {182--197},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/}
}
TY  - JOUR
AU  - S. Janeczko
AU  - Z. Jelonek
TI  - Diffeomorphisms Preserving Symplectic Data on Submanifolds
JO  - Informatics and Automation
PY  - 2009
SP  - 182
EP  - 197
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/
LA  - en
ID  - TRSPY_2009_267_a13
ER  - 
%0 Journal Article
%A S. Janeczko
%A Z. Jelonek
%T Diffeomorphisms Preserving Symplectic Data on Submanifolds
%J Informatics and Automation
%D 2009
%P 182-197
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/
%G en
%F TRSPY_2009_267_a13
S. Janeczko; Z. Jelonek. Diffeomorphisms Preserving Symplectic Data on Submanifolds. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 182-197. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/

[1] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 4, VINITI, M., 1985, 5–135 | MR

[2] Banyaga A., The structure of classical diffeomorphism groups, Math. and Appl, 400, Kluwer, Dordrecht, 1997 | MR | Zbl

[3] Belov-Kanel A., Kontsevich M., “Automorphisms of the Weyl algebra”, Lett. Math. Phys., 74 (2005), 181–199 | DOI | MR | Zbl

[4] Borel A., “Injective endomorphisms of algebraic varieties”, Arch. Math., 20 (1969), 531–537 | DOI | MR | Zbl

[5] Calabi E., “On the group of automorphisms of a symplectic manifold”, Problems in analysis, ed. R. Gunning, Princeton Univ. Press, Princeton, NJ, 1970, 1–26 | MR | Zbl

[6] Ekeland I., Hofer H., “Symplectic topology and Hamiltonian dynamics”, Math. Ztschr., 200 (1989), 355–378 | DOI | MR | Zbl

[7] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 | MR | Zbl

[8] Hofer H. H. W., “Dynamics, topology and holomorphic curves”, Proc. Intern. Congr. Math., V. 1 (Berlin, 1998), Doc. Math., Extra vol., Univ. Bielefeld, Bielefeld, 1998, 255–280 | MR

[9] Janeczko S., Jelonek Z., “Linear automorphisms that are symplectomorphisms”, J. London Math. Soc., 69 (2004), 503–517 | DOI | MR | Zbl

[10] Janeczko S., Jelonek Z., “Characterization of diffeomorphisms that are symplectomorphisms”, Fund. math., 205:2 (2009), 147–160 | DOI | MR | Zbl

[11] Janeczko S., Jelonek Z., “Polynomial symplectomorphisms”, Bull. London Math. Soc., 40 (2008), 108–116 | DOI | MR | Zbl

[12] Jelonek Z., “Affine smooth varieties with finite group of automorphisms”, Math. Ztschr., 216 (1994), 575–591 | DOI | MR | Zbl

[13] Jelonek Z., “Affine automorphisms that are isometries”, Lin. Alg. and Appl., 364 (2003), 125–134 | DOI | MR | Zbl

[14] Łojasiewicz S., Introduction to complex analytic geometry, Birkhäuser, Basel, 1991 | MR

[15] McDuff D., Salamon D., Introduction to symplectic topology, 2nd ed., Oxford Univ. Press, New York, 1998 | MR | Zbl

[16] McDuff D., “A survey of the topological properties of symplectomorphism groups”, Topology, geometry and quantum field theory, Proc. 2002 Symp. in honour of G. Segal, ed. U. Tillmann, Cambridge Univ. Press, Cambridge, 2004, 173–193 | DOI | MR | Zbl

[17] Shestakov I. P., Umirbaev U. U., “The tame and the wild automorphisms of polynomial rings in three variables”, J. Amer. Math. Soc., 17 (2004), 197–227 | DOI | MR | Zbl

[18] Tsuchimoto Y., “Preliminaries on Dixmier conjecture”, Mem. Fac. Sci. Kochi Univ. A, 24 (2003), 43–59 | MR | Zbl

[19] Vaisman I., “Locally conformal symplectic manifolds”, Intern. J. Math. and Math. Sci., 8 (1985), 521–536 | DOI | MR | Zbl