Diffeomorphisms Preserving Symplectic Data on Submanifolds
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 182-197

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize general symplectic manifolds and their structure groups through a family of isotropic or symplectic submanifolds and their diffeomorphic invariance. In this way we obtain a complete geometric characterization of symplectic diffeomorphisms and a reinterpretation of symplectomorphisms as diffeomorphisms acting purely on isotropic or symplectic submanifolds.
@article{TRSPY_2009_267_a13,
     author = {S. Janeczko and Z. Jelonek},
     title = {Diffeomorphisms {Preserving} {Symplectic} {Data} on {Submanifolds}},
     journal = {Informatics and Automation},
     pages = {182--197},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/}
}
TY  - JOUR
AU  - S. Janeczko
AU  - Z. Jelonek
TI  - Diffeomorphisms Preserving Symplectic Data on Submanifolds
JO  - Informatics and Automation
PY  - 2009
SP  - 182
EP  - 197
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/
LA  - en
ID  - TRSPY_2009_267_a13
ER  - 
%0 Journal Article
%A S. Janeczko
%A Z. Jelonek
%T Diffeomorphisms Preserving Symplectic Data on Submanifolds
%J Informatics and Automation
%D 2009
%P 182-197
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/
%G en
%F TRSPY_2009_267_a13
S. Janeczko; Z. Jelonek. Diffeomorphisms Preserving Symplectic Data on Submanifolds. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 182-197. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a13/