Consistency on Cubic Lattices for Determinants of Arbitrary Orders
Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 202-217

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special class of two-dimensional discrete equations defined by relations on elementary $N\times N$ squares, $N>2$, of the square lattice $\mathbb Z^2$, and propose a new type of consistency conditions on cubic lattices for such discrete equations that is connected to bending elementary $N\times N$ squares, $N>2$, in the cubic lattice $\mathbb Z^3$. For an arbitrary $N$ we prove such consistency on cubic lattices for two-dimensional discrete equations defined by the condition that the determinants of values of the field at the points of the square lattice $\mathbb Z^2$ that are contained in elementary $N\times N$ squares vanish.
@article{TRSPY_2009_266_a10,
     author = {O. I. Mokhov},
     title = {Consistency on {Cubic} {Lattices} for {Determinants} of {Arbitrary} {Orders}},
     journal = {Informatics and Automation},
     pages = {202--217},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Consistency on Cubic Lattices for Determinants of Arbitrary Orders
JO  - Informatics and Automation
PY  - 2009
SP  - 202
EP  - 217
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/
LA  - ru
ID  - TRSPY_2009_266_a10
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Consistency on Cubic Lattices for Determinants of Arbitrary Orders
%J Informatics and Automation
%D 2009
%P 202-217
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/
%G ru
%F TRSPY_2009_266_a10
O. I. Mokhov. Consistency on Cubic Lattices for Determinants of Arbitrary Orders. Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 202-217. http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/