Consistency on Cubic Lattices for Determinants of Arbitrary Orders
Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 202-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special class of two-dimensional discrete equations defined by relations on elementary $N\times N$ squares, $N>2$, of the square lattice $\mathbb Z^2$, and propose a new type of consistency conditions on cubic lattices for such discrete equations that is connected to bending elementary $N\times N$ squares, $N>2$, in the cubic lattice $\mathbb Z^3$. For an arbitrary $N$ we prove such consistency on cubic lattices for two-dimensional discrete equations defined by the condition that the determinants of values of the field at the points of the square lattice $\mathbb Z^2$ that are contained in elementary $N\times N$ squares vanish.
@article{TRSPY_2009_266_a10,
     author = {O. I. Mokhov},
     title = {Consistency on {Cubic} {Lattices} for {Determinants} of {Arbitrary} {Orders}},
     journal = {Informatics and Automation},
     pages = {202--217},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Consistency on Cubic Lattices for Determinants of Arbitrary Orders
JO  - Informatics and Automation
PY  - 2009
SP  - 202
EP  - 217
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/
LA  - ru
ID  - TRSPY_2009_266_a10
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Consistency on Cubic Lattices for Determinants of Arbitrary Orders
%J Informatics and Automation
%D 2009
%P 202-217
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/
%G ru
%F TRSPY_2009_266_a10
O. I. Mokhov. Consistency on Cubic Lattices for Determinants of Arbitrary Orders. Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 202-217. http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a10/

[1] Mokhov O. I., “O sovmestnosti determinanta na kubicheskikh reshetkakh”, UMN, 63:6 (2008), 169–170 ; arXiv: 0809.2032 | DOI | MR | Zbl

[2] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasgow Math. J., 43:A (2001), 109–123 ; arXiv: nlin/0001054 | DOI | MR

[3] Nijhoff F. W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297:1–2 (2002), 49–58 ; arXiv: nlin/0110027 | DOI | MR | Zbl

[4] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Intern. Math. Res. Not., 2002, no. 11, 573–611 ; arXiv: nlin/0110004 | DOI | MR | Zbl

[5] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 ; arXiv: nlin/0202024 | MR | Zbl

[6] Bobenko A. I., Suris Yu. B., Discrete differential geometry. Consistency as integrability, E-print , 2005 arXiv: math/0504358

[7] Bobenko A. I., Suris Yu. B., “O printsipakh diskretizatsii differentsialnoi geometrii. Geometriya sfer”, UMN, 62:1 (2007), 3–50 ; arXiv: math/0608291 | DOI | MR | Zbl

[8] Veselov A. P., “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR | Zbl

[9] Adler V. E., Bobenko A. I., Suris Yu. B., Discrete nonlinear hyperbolic equations. Classification of integrable cases, E-print , 2007 arXiv: 0705.1663 | MR

[10] Tsarev S. P., Wolf T., “Classification of three-dimensional integrable scalar discrete equations”, Lett. Math. Phys., 84:1 (2008), 31–39 ; arXiv: 0706.2464 | DOI | MR | Zbl

[11] Hietarinta J., “A new two-dimensional lattice model that is “consistent around a cube””, J. Phys. A Math. and Gen., 37:6 (2004), L67–L73 ; arXiv: nlin/0311034 | DOI | MR | Zbl

[12] Adler V. E., Veselov A. P., “Cauchy problem for integrable discrete equations on quad-graphs”, Acta appl. math., 84:2 (2004), 237–262 ; arXiv: math-ph/0211054 | DOI | MR | Zbl

[13] Adler V. E., Suris Yu. B., “$\mathrm Q_4$: Integrable master equation related to an elliptic curve”, Intern. Math. Res. Not., 2004, no. 47, 2523–2553 ; arXiv: nlin/0309030 | DOI | MR | Zbl

[14] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston (MA), 1994 | MR | Zbl