Multifluid Models for Cyclic Cosmology
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 66-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inspired by the Landau two-fluid model of superfluidity, we consider a similar multifluid description for cosmology where two normal fluids occur for matter and radiation, respectively. For cyclic cosmology, two dark energy superfluid components turn out to be insufficient but three superfluids can lead to a sensible five-fluid model which in a certain limit becomes indistinguishable from a brane-world cyclic model proposed earlier. Distinguishing more general five-fluid models from brane-world models for cyclic cosmology could be feasible with more accurate observational data.
@article{TRSPY_2009_265_a3,
     author = {I. Ya. Aref'eva and P. H. Frampton and S. Matsuzaki},
     title = {Multifluid {Models} for {Cyclic} {Cosmology}},
     journal = {Informatics and Automation},
     pages = {66--69},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a3/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - P. H. Frampton
AU  - S. Matsuzaki
TI  - Multifluid Models for Cyclic Cosmology
JO  - Informatics and Automation
PY  - 2009
SP  - 66
EP  - 69
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a3/
LA  - en
ID  - TRSPY_2009_265_a3
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A P. H. Frampton
%A S. Matsuzaki
%T Multifluid Models for Cyclic Cosmology
%J Informatics and Automation
%D 2009
%P 66-69
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a3/
%G en
%F TRSPY_2009_265_a3
I. Ya. Aref'eva; P. H. Frampton; S. Matsuzaki. Multifluid Models for Cyclic Cosmology. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 66-69. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a3/

[1] Nambu Y., “Axial vector current conservation in weak interactions”, Phys. Rev. Lett., 4 (1960), 380–382 | DOI

[2] Bardeen J., Cooper L. N., Schrieffer J. R., “Theory of superconductivity”, Phys. Rev., 108 (1957), 1175–1204 | DOI | MR | Zbl

[3] Bogolyubov N. N., “K teorii sverkhtekuchesti”, Izv. AN SSSR. Ser. fiz., 11 (1947), 77–90 | MR

[4] Bogolyubov N. N., Tolmachev V. V., Shirkov D. V., Novyi metod v teorii sverkhprovodimosti, Izd-vo AN SSSR, M., 1958

[5] Baum L., Frampton P. H., “Turnaround in cyclic cosmology”, Phys. Rev. Lett., 98:7 (2007), Pap. 071301 ; arXiv:hep-th/0610213 | DOI | MR

[6] Frampton P. H., “Cyclic universe and infinite past”, Mod. Phys. Lett. A, 22 (2007), 2587–2592 ; arXiv:0705.2730 | DOI | MR | Zbl

[7] Baum L., Frampton P. H., “Entropy of contracting universe in cyclic cosmology”, Mod. Phys. Lett. A, 23 (2008), 33–36 ; arXiv:hep-th/0703162 | DOI

[8] Landau L. D., “Teoriya sverkhtekuchesti geliya II”, ZhETF, 11 (1941), 592–614

[9] Bardeen J., “Two-fluid model of superconductivity”, Phys. Rev. Lett., 1 (1958), 399–400 | DOI

[10] Nojiri S., Odintsov S. D., “The oscillating dark energy: future singularity and coincidence problem”, Phys. Lett. B, 637 (2006), 139–148 ; arXiv:hep-th/0603062 | DOI

[11] Nojiri S., Odintsov S. D., “The new form of the equation of state for dark energy fluid and accelerating universe”, Phys. Lett. B, 639 (2006), 144–150 ; arXiv:hep-th/0606025 | DOI

[12] Spergel D. N. et al., “Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Implications for cosmology”, Astrophys. J. Suppl. Ser., 170 (2007), 377–408 ; arXiv:astro-ph/0603449 | DOI