On the Existence of Generalized Gibbs Measures for the One-Dimensional $p$-adic Countable State Potts Model
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 177-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-dimensional countable state $p$-adic Potts model. A construction of generalized $p$-adic Gibbs measures depending on weights $\lambda$ is given, and an investigation of such measures is reduced to the examination of a $p$-adic dynamical system. This dynamical system has a form of series of rational functions. Studying such a dynamical system, under some condition concerning weights, we prove the existence of generalized $p$-adic Gibbs measures. Note that the condition found does not depend on the values of the prime $p$, and therefore an analogous fact is not true when the number of states is finite. It is also shown that under the condition there may occur a phase transition.
@article{TRSPY_2009_265_a15,
     author = {F. Mukhamedov},
     title = {On the {Existence} of {Generalized} {Gibbs} {Measures} for the {One-Dimensional} $p$-adic {Countable} {State} {Potts} {Model}},
     journal = {Informatics and Automation},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a15/}
}
TY  - JOUR
AU  - F. Mukhamedov
TI  - On the Existence of Generalized Gibbs Measures for the One-Dimensional $p$-adic Countable State Potts Model
JO  - Informatics and Automation
PY  - 2009
SP  - 177
EP  - 188
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a15/
LA  - en
ID  - TRSPY_2009_265_a15
ER  - 
%0 Journal Article
%A F. Mukhamedov
%T On the Existence of Generalized Gibbs Measures for the One-Dimensional $p$-adic Countable State Potts Model
%J Informatics and Automation
%D 2009
%P 177-188
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a15/
%G en
%F TRSPY_2009_265_a15
F. Mukhamedov. On the Existence of Generalized Gibbs Measures for the One-Dimensional $p$-adic Countable State Potts Model. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 177-188. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a15/

[1] Albeverio S., Karwowski W., “A random walk on $p$-adics – the generator and its spectrum”, Stoch. Processes and Appl., 53 (1994), 1–22 | DOI | MR | Zbl

[2] Albeverio S., Zhao X., “On the relation between different constructions of random walks on $p$-adics”, Markov Processes and Relat. Fields, 6 (2000), 239–255 | MR | Zbl

[3] Albeverio S., Zhao X., “Measure-valued branching processes associated with random walks on $p$-adics”, Ann. Probab., 28 (2000), 1680–1710 | DOI | MR | Zbl

[4] Aref'eva I. Ya., Dragović B., Volovich I. V., “On the $p$-adic summability of the anharmonic oscillator”, Phys. Lett. B, 200 (1988), 512–514 | DOI | MR

[5] Aref'eva I. Ya., Dragovich B., Frampton P. H., Volovich I. V., “The wave function of the Universe and $p$-adic gravity”, Intern. J. Mod. Phys. A, 6:24 (1991), 4341–4358 | DOI | MR | Zbl

[6] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic Siegel discs”, Physica D, 71 (1994), 222–236 | DOI | MR | Zbl

[7] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. and Gen., 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[8] Beltrametti E. G., Cassinelli G., “Quantum mechanics and $p$-adic numbers”, Found. Phys., 2 (1972), 1–7 | DOI | MR

[9] Benedetto R. L., “Hyperbolic maps in $p$-adic dynamics”, Ergod. Theory and Dyn. Syst., 21 (2001), 1–11 | DOI | MR | Zbl

[10] Del Muto M., Figà-Talamanca A., “Diffusion on locally compact ultrametric spaces”, Expo. Math., 22 (2004), 197–211 | DOI | MR | Zbl

[11] Dobrushin R. L., “Zadacha edinstvennosti gibbsovskogo sluchainogo polya i problema fazovykh perekhodov”, Funkts. analiz i ego pril., 2:4 (1968), 44–57 | MR | Zbl

[12] Dobrushin R. L., “Zadanie sistemy sluchainykh velichin pri pomoschi uslovnykh raspredelenii”, Teoriya veroyatn. i ee prim., 15:3 (1970), 469–497 | Zbl

[13] Dragovich B., Khrennikov A., Mihajlović D., “Linear fractional $p$-adic and adelic dynamical systems”, Rep. Math. Phys., 60:1 (2007), 55–68 | DOI | MR | Zbl

[14] Freund P. G. O., Olson M., “Non-Archimedean strings”, Phys. Lett. B, 199 (1987), 186–190 | DOI | MR

[15] Ganikhodjaev N., “The Potts model on $\mathbb Z^d$ with countable set of spin values”, J. Math. Phys., 45 (2004), 1121–1127 | DOI | MR | Zbl

[16] Ganikhodzhaev N. N., Mukhamedov F. M., Rozikov U. A., “Fazovye perekhody v modeli Izinga na $\mathbb Z$ nad polem $p$-adicheskikh chisel”, Uzb. mat. zhurn., 1998, no. 4, 23–29 | MR

[17] Georgii H.-O., Gibbs measures and phase transitions, W. de Gruyter, Berlin, 1988 | MR | Zbl

[18] Herman M., Yoccoz J.-C., “Generalizations of some theorems of small divisors to non-Archimedean fields”, Geometric dynamics, Proc. Intern. Symp. (Rio de Janeiro, 1981), Lect. Notes Math., 1007, Springer, Berlin, 1983, 408–447 | DOI | MR

[19] Khamraev M., Mukhamedov F., “On $p$-adic $\lambda$-model on the Cayley tree”, J. Math. Phys., 45 (2004), 4025–4034 | DOI | MR | Zbl

[20] Kaneko H., Kochubei A. N., “Weak solutions of stochastic differential equations over the field of $p$-adic numbers”, Tohoku Math. J., 59:4 (2007), 547–564 ; arXiv: 0708.1706 | DOI | MR | Zbl

[21] Karwowski W., Vilela Mendes R., “Hierarchical structures and asymmetric stochastic processes on $p$-adics and adeles”, J. Math. Phys., 35 (1994), 4637–4650 | DOI | MR | Zbl

[22] Khrennikov A., “$p$-Adic valued probability measures”, Indag. Math. New Ser., 7 (1996), 311–330 | DOI | MR | Zbl

[23] Khrennikov A. Yu., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[24] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[25] Khrennikov A. Yu., Kozyrev S. V., “Replica symmetry breaking related to a general ultrametric space. I: Replica matrices and functionals”, Physica A, 359 (2006), 222–240 ; “II: RSB solutions and the $n\to0$ limit”, Physica A, 359 (2006), 241–266 ; “III: The case of general measure”, Physica A, 378 (2007), 283–298 | DOI | DOI | DOI

[26] Khrennikov A. Yu., Mukhamedov F. M., Mendes J. F. F., “On $p$-adic Gibbs measures of the countable state Potts model on the Cayley tree”, Nonlinearity, 20 (2007), 2923–2937 | DOI | MR | Zbl

[27] Khrennikov A. Yu., Nilsson M., $p$-Adic deterministic and random dynamics, Kluwer, Dordrecht, 2004 | MR | Zbl

[28] Khrennikov A., Yamada S., van Rooij A., “The measure-theoretical approach to $p$-adic probability theory”, Ann. Math. Blaise Pascal., 6 (1999), 21–32 | DOI | MR | Zbl

[29] Koblitz N., $p$-Adic numbers, $p$-adic analysis, and zeta-functions, Springer, Berlin, 1977 | MR | Zbl

[30] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, Pure and Appl. Math., 244, M. Dekker, New York, 2001 | MR | Zbl

[31] Kozyrev S. V., “Vspleski i spektralnyi analiz ultrametricheskikh psevdodifferentsialnykh operatorov”, Mat. sb., 198:1 (2007), 103–126 | DOI | MR | Zbl

[32] Ludkovsky S. V., Non-Archimedean valued quasi-invariant descending at infinity measures, E-print , 2004 arXiv: math/0405231 | MR

[33] Ludkovsky S., Khrennikov A., “Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields”, Markov Processes and Relat. Fields, 9 (2003), 131–162 | MR | Zbl

[34] Marinary E., Parisi G., “On the $p$-adic five-point function”, Phys. Lett. B, 203 (1988), 52–54 | DOI | MR

[35] Mukhamedov F., Rozikov U., “On rational $p$-adic dynamical systems”, Methods Funct. Anal. and Topol., 10:2 (2004), 21–31 ; arXiv: math/0511205 | MR | Zbl

[36] Mukhamedov F. M., Rozikov U. A., “On Gibbs measures of $p$-adic Potts model on the Cayley tree”, Indag. Math. New Ser., 15 (2004), 85–99 | DOI | MR | Zbl

[37] Mukhamedov F., Rozikov U., “On inhomogeneous $p$-adic Potts model on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. and Relat. Top., 8 (2005), 277–290 | DOI | MR | Zbl

[38] Mukhamedov F. M., Rozikov U. A., Mendes J. F. F., “On phase transitions for $p$-adic Potts model with competing interactions on a Cayley tree”, $p$-Adic mathematical physics, Proc. 2nd Intern. Conf. (Belgrade, 2005), AIP Conf. Proc., 826, Amer. Inst. Phys., Melville, NY, 2006, 140–150 | DOI | MR | Zbl

[39] Rivera-Letelier J., “Dynamique des fonctions rationnelles sur des corps locaux”, Geometric methods in dynamics, II, Astérisque, 287, Soc. math. France, Paris, 2003, 147–230 | MR | Zbl

[40] van Rooij A. C. M., Non-Archimedean functional analysis, M. Dekker, New York, 1978 | MR | Zbl

[41] Schikhof W. H., Ultrametric calculus, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[42] Silverman J. H., The arithmetic of dynamical systems, Grad. Texts Math., 241, Springer, New York, 2007 | DOI | MR | Zbl

[43] Silverman J. H., Bibliography for arithmetic dynamical systems, , 2008 http://www.math.brown.edu/~jhs/ADSBIB.pdf

[44] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl

[45] Spitzer F., “Phase transition in one-dimensional nearest-neighbor systems”, J. Funct. Anal., 20 (1975), 240–255 | DOI | MR | Zbl

[46] Thiran E., Verstegen D., Weters J., “$p$-Adic dynamics”, J. Stat. Phys., 54 (1989), 893–913 | DOI | MR | Zbl

[47] Vivaldi F., Algebraic and arithmetic dynamics bibliographical database, , 2009 http://www.maths.qmw.ac.uk/~fv/database/algdyn.pdf

[48] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[49] Volovich I. V., Number theory as the ultimate physical theory, Preprint No TH 4781/87, CERN, Geneva, 1987

[50] Volovich I. V., “$p$-Adic string”, Class. and Quantum Grav., 4 (1987), L83–L87 | DOI | MR

[51] Yasuda K., “Extension of measures to infinite dimensional spaces over $p$-adic field”, Osaka J. Math., 37 (2000), 967–985 | MR | Zbl

[52] Wu F. Y., “The Potts model”, Rev. Mod. Phys., 54 (1982), 235–268 | DOI | MR