Hausdorff Dimension and Hierarchical System Dynamics
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 159-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Hausdorff dimension may be used to distinguish different relaxation dynamics in hierarchical systems. We examine the hierarchical systems following the temperature-dependent power-law decay and the Kohlrausch law. For our purposes, we consider random walks on $p$-adic integer numbers.
@article{TRSPY_2009_265_a13,
     author = {K. Lukierska-Walasek and K. Topolski},
     title = {Hausdorff {Dimension} and {Hierarchical} {System} {Dynamics}},
     journal = {Informatics and Automation},
     pages = {159--164},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a13/}
}
TY  - JOUR
AU  - K. Lukierska-Walasek
AU  - K. Topolski
TI  - Hausdorff Dimension and Hierarchical System Dynamics
JO  - Informatics and Automation
PY  - 2009
SP  - 159
EP  - 164
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a13/
LA  - en
ID  - TRSPY_2009_265_a13
ER  - 
%0 Journal Article
%A K. Lukierska-Walasek
%A K. Topolski
%T Hausdorff Dimension and Hierarchical System Dynamics
%J Informatics and Automation
%D 2009
%P 159-164
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a13/
%G en
%F TRSPY_2009_265_a13
K. Lukierska-Walasek; K. Topolski. Hausdorff Dimension and Hierarchical System Dynamics. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 159-164. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a13/

[1] Albeverio S., Karwowski W., “A random walk on $p$-adics – the generator and its spectrum”, Stoch. Process. and Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl

[2] Albeverio S., Karwowski W., Zhao X., “Asymptotics and spectral results for random walks on $p$-adics”, Stoch. Process. and Appl., 83:1 (1999), 39–59 | DOI | MR | Zbl

[3] Albeverio S., Zhao X., “A decomposition theorem for Lévy processes on local fields”, J. Theor. Probab., 14 (2001), 1–19 | DOI | MR | Zbl

[4] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. and Gen., 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[5] Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. and Gen., 35:2 (2002), 177–189 | DOI | MR | Zbl

[6] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. and Gen., 36:15 (2003), 4239–4246 | DOI | MR | Zbl

[7] Blumenthal R. M., Getoor R. K., “Some theorems on stable processes”, Trans. Amer. Math. Soc., 95 (1960), 263–273 | DOI | MR | Zbl

[8] Dobierzewska-Mozrzymas E., Biegański P., Pieciul E., Wójcik J., “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates”, J. Phys.: Condens. Matter., 11:29 (1999), 5561–5568 | DOI

[9] Evans S. N., “Local properties of Lévy processes on a totally disconnected group”, J. Theor. Probab., 2 (1989), 209–259 | DOI | MR | Zbl

[10] Federer H., Geometric measure theory, Grundl. math. Wissensch. Einzeldarst., 153, Springer, Berlin, 1969 | MR | Zbl

[11] Gardiner C. W., Handbook of stochastic methods for physics, chemistry and the natural sciences, Springer, Berlin, 1985 | MR

[12] Gnedenko B. V., Kolmogorov A. N., Limit distributions for sums of independent random variables, Addison-Wesley, Reading, MA, 1968 | MR

[13] Kaneko H., “Time-inhomogeneous stochastic processes on the $p$-adic number field”, Tohoku Math. J., 55 (2003), 65–87 | DOI | MR | Zbl

[14] Khintchine A., “Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze”, Mat. sb., 2(44):1 (1937), 79–119 | Zbl

[15] Khinchin A. Ya., Predelnye zakony dlya summ nezavisimykh sluchainykh velichin, ONTI, M.–L., 1938 | Zbl

[16] Klafter J., Blumen A., Shleisinger M. F., “Stochastic pathway to anomalous diffusion”, Phys. Rev. A, 35:7 (1987), 3081–3085 | DOI | MR

[17] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, M. Dekker, New York, 2001 | MR | Zbl

[18] Kozyrev S. V., Osipov V. A., Avetisov V. A., “Nondegenerate ultrametric diffusion”, J. Math. Phys., 46:6 (2005), Pap. 063302 | DOI | MR

[19] Lévy P., Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937

[20] Lukierska-Walasek K., Topolski K., “Random walk on $p$-adics and hierarchical systems”, Phys. Rev. B, 73:5 (2006), Pap. 054419 | DOI

[21] Mantegna R. N., Stanley H. E., “Scaling behaviour in the dynamics of an economic index”, Nature, 376 (1995), 46–49 | DOI

[22] Mattila P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[23] Ogielski A. T., Stein D. L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55 (1985), 1634–1637 | DOI | MR

[24] Rogers C. A., Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970 | MR | Zbl

[25] Sato K., Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[26] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic analysis and mathematical physics, World Sci., Singapore, 1994 | MR | MR | Zbl

[27] West B. J., Deering W., “Fractal physiology for physicists: Lévy statistics”, Phys. Rep., 246 (1994), 1–100 | DOI

[28] Yasuda K., “Additive processes on local fields”, J. Math. Sci. Univ. Tokyo, 3 (1996), 629–654 | MR | Zbl

[29] Zaslavsky G. M., “Fractional kinetic equation for Hamiltonian chaos”, Physica D, 76 (1994), 110–122 | DOI | MR | Zbl

[30] Zimbardo G., Veltri P., Basile G., Principato S., “Anomalous diffusion and Lévy random walk of magnetic field lines in three dimensional turbulence”, Phys. Plasmas, 2 (1995), 2653–2663 | DOI