On a~$p$-adic Wave Equation
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 154-158

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a "$p$-adic plane wave" $f(t+\omega_1x_1+\dots+\omega_nx_n)$, $(t,x_1,\dots,x_n)\in\mathbb Q_p^{n+1}$, where $f$ is a Bruhat–Schwartz complex-valued test function and $\max_{1\le j\le n}|\omega_j|_p=1$, satisfies, for any $f$, a certain homogeneous pseudodifferential equation, an analog of the classical wave equation. A theory of the Cauchy problem for this equation is developed.
@article{TRSPY_2009_265_a12,
     author = {A. N. Kochubei},
     title = {On a~$p$-adic {Wave} {Equation}},
     journal = {Informatics and Automation},
     pages = {154--158},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/}
}
TY  - JOUR
AU  - A. N. Kochubei
TI  - On a~$p$-adic Wave Equation
JO  - Informatics and Automation
PY  - 2009
SP  - 154
EP  - 158
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/
LA  - en
ID  - TRSPY_2009_265_a12
ER  - 
%0 Journal Article
%A A. N. Kochubei
%T On a~$p$-adic Wave Equation
%J Informatics and Automation
%D 2009
%P 154-158
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/
%G en
%F TRSPY_2009_265_a12
A. N. Kochubei. On a~$p$-adic Wave Equation. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 154-158. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/