On a~$p$-adic Wave Equation
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 154-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a "$p$-adic plane wave" $f(t+\omega_1x_1+\dots+\omega_nx_n)$, $(t,x_1,\dots,x_n)\in\mathbb Q_p^{n+1}$, where $f$ is a Bruhat–Schwartz complex-valued test function and $\max_{1\le j\le n}|\omega_j|_p=1$, satisfies, for any $f$, a certain homogeneous pseudodifferential equation, an analog of the classical wave equation. A theory of the Cauchy problem for this equation is developed.
@article{TRSPY_2009_265_a12,
     author = {A. N. Kochubei},
     title = {On a~$p$-adic {Wave} {Equation}},
     journal = {Informatics and Automation},
     pages = {154--158},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/}
}
TY  - JOUR
AU  - A. N. Kochubei
TI  - On a~$p$-adic Wave Equation
JO  - Informatics and Automation
PY  - 2009
SP  - 154
EP  - 158
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/
LA  - en
ID  - TRSPY_2009_265_a12
ER  - 
%0 Journal Article
%A A. N. Kochubei
%T On a~$p$-adic Wave Equation
%J Informatics and Automation
%D 2009
%P 154-158
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/
%G en
%F TRSPY_2009_265_a12
A. N. Kochubei. On a~$p$-adic Wave Equation. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 154-158. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/

[1] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., “Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems”, J. Fourier Anal. and Appl., 12:4 (2006), 393–425 | DOI | MR | Zbl

[2] Albeverio S., Kozyrev S. V., “Multidimensional ultrametric pseudodifferential equations”, Tr. MIAN, 265, 2009, 19–35 ; arXiv: 0708.2074 | MR | Zbl

[3] Chernov V. G., “Odnorodnye obobschennye funktsii i preobrazovanie Radona v prostranstve pryamougolnykh matrits nad nepreryvnym lokalno kompaktnym nesvyaznym polem”, Tr. sem. po vekt. i tenz. analizu, 16, Izd-vo MGU, M., 1972, 374–406

[4] Helgason S., The Radon transform, Birkhäuser, Boston, 1980 | MR | Zbl

[5] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, M. Dekker, New York, 2001 | MR | Zbl

[6] Kochubei A. N., “A non-Archimedean wave equation”, Pacif. J. Math., 235 (2008), 245–261 | DOI | MR | Zbl

[7] Kozyrev S. V., “$p$-Adicheskie psevdodifferentsialnye operatory: metody i prilozheniya”, Tr. MIAN, 245, 2004, 154–165 | MR | Zbl

[8] Taibleson M. H., “Harmonic analysis on $n$-dimensional vector spaces over local fields. I: Basic results on fractional integration”, Math. Ann., 176 (1968), 191–207 | DOI | MR

[9] Varadarajan V. S., “Arithmetic quantum physics: why, what, and whither”, Tr. MIAN, 245, 2004, 273–280 | MR | Zbl

[10] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[11] Zuniga-Galindo W. A., “Pseudo-differential equations connected with $p$-adic forms and local zeta functions”, Bull. Aust. Math. Soc., 70 (2004), 73–86 | DOI | MR | Zbl