On a~$p$-adic Wave Equation
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 154-158
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a "$p$-adic plane wave" $f(t+\omega_1x_1+\dots+\omega_nx_n)$, $(t,x_1,\dots,x_n)\in\mathbb Q_p^{n+1}$, where $f$ is a Bruhat–Schwartz complex-valued test function and $\max_{1\le j\le n}|\omega_j|_p=1$, satisfies, for any $f$, a certain homogeneous pseudodifferential equation, an analog of the classical wave equation. A theory of the Cauchy problem for this equation is developed.
@article{TRSPY_2009_265_a12,
author = {A. N. Kochubei},
title = {On a~$p$-adic {Wave} {Equation}},
journal = {Informatics and Automation},
pages = {154--158},
publisher = {mathdoc},
volume = {265},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/}
}
A. N. Kochubei. On a~$p$-adic Wave Equation. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 154-158. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a12/