$p$-Adic Nonorthogonal Wavelet Bases
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 7-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing MRA-based $p$-adic wavelet systems that form Riesz bases in $L^2(\mathbb Q_p)$ is developed. The method is implemented for an infinite family of MRAs.
@article{TRSPY_2009_265_a0,
     author = {S. Albeverio and S. Evdokimov and M. Skopina},
     title = {$p${-Adic} {Nonorthogonal} {Wavelet} {Bases}},
     journal = {Informatics and Automation},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a0/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - S. Evdokimov
AU  - M. Skopina
TI  - $p$-Adic Nonorthogonal Wavelet Bases
JO  - Informatics and Automation
PY  - 2009
SP  - 7
EP  - 18
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a0/
LA  - en
ID  - TRSPY_2009_265_a0
ER  - 
%0 Journal Article
%A S. Albeverio
%A S. Evdokimov
%A M. Skopina
%T $p$-Adic Nonorthogonal Wavelet Bases
%J Informatics and Automation
%D 2009
%P 7-18
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a0/
%G en
%F TRSPY_2009_265_a0
S. Albeverio; S. Evdokimov; M. Skopina. $p$-Adic Nonorthogonal Wavelet Bases. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 7-18. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a0/

[1] Mallat S., Multiresolution representation and wavelets, Ph. D. Thes., Univ. Pennsylvania, Philadelphia, PA, 1988

[2] Meyer Y., Ondelettes et fonctions splines, Sémin. équations dériv. partielles 1986–1987; Exp. 6, École Polytech., Palaiseau, 1987 | MR

[3] Kozyrev S. V., “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. mat., 66:2 (2002), 149–158 ; arxiv: math-ph/0012019 | DOI | MR | Zbl

[4] Daubechies I., Ten lectures on wavelets, CBMS-NSF Reg. Conf. Ser. Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl

[5] Kozyrev S. V., “$p$-Adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, TMF, 138:3 (2004), 383–394 | DOI | MR | Zbl

[6] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | DOI | MR | Zbl

[7] Benedetto R. L., “Examples of wavelets for local fields”, Wavelets, frames, and operator theory (College Park, MD, 2003), Amer. Math. Soc., Providence, RI, 2004, 27–47 | DOI | MR | Zbl

[8] Khrennikov A. Yu., Shelkovich V. M., $p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators, E-print , 2006 arxiv: math-ph/0612049

[9] Shelkovich V. M., Skopina M., “$p$-Adic Haar multiresolution analysis and pseudo-differential operators”, J. Fourier Anal. and Appl., 2009 (to appear) ; arxiv: 0705.2294 | MR | Zbl

[10] Khrennikov A. Yu., Shelkovich V. M., Skopina M., “$p$-Adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 2009 (to appear) ; arxiv: 0711.2820 | MR

[11] Albeverio S., Evdokimov S., Skopina M., $p$-Adic multiresolution analyses, E-print , 2008 arxiv: 0810.1147

[12] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | Zbl

[13] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[14] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl

[15] Evdokimov S. A., Skopina M. A., “2-Adicheskie bazisy vspleskov”, Tr. Inst. mat. i mekh. UrO RAN, 15, no. 1, 2009, 135–146