Normalization of a Poisson Algebra Is Poisson
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 77-80
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the normalization of a Poisson algebra is Poisson.
@article{TRSPY_2009_264_a8,
author = {D. B. Kaledin},
title = {Normalization of {a~Poisson} {Algebra} {Is} {Poisson}},
journal = {Informatics and Automation},
pages = {77--80},
year = {2009},
volume = {264},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a8/}
}
D. B. Kaledin. Normalization of a Poisson Algebra Is Poisson. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 77-80. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a8/
[1] Bourbaki N., Eléments de mathématique. Algèbgre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Hermann, Paris, 1964 | MR | Zbl
[2] Beauville A., “Symplectic singularities”, Invent. math., 139 (2000), 541–549 | DOI | MR | Zbl
[3] Seidenberg A., “Derivations and integral closure”, Pacif. J. Math., 16 (1966), 167–173 | MR | Zbl