Normalization of a~Poisson Algebra Is Poisson
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 77-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the normalization of a Poisson algebra is Poisson.
@article{TRSPY_2009_264_a8,
     author = {D. B. Kaledin},
     title = {Normalization of {a~Poisson} {Algebra} {Is} {Poisson}},
     journal = {Informatics and Automation},
     pages = {77--80},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a8/}
}
TY  - JOUR
AU  - D. B. Kaledin
TI  - Normalization of a~Poisson Algebra Is Poisson
JO  - Informatics and Automation
PY  - 2009
SP  - 77
EP  - 80
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a8/
LA  - ru
ID  - TRSPY_2009_264_a8
ER  - 
%0 Journal Article
%A D. B. Kaledin
%T Normalization of a~Poisson Algebra Is Poisson
%J Informatics and Automation
%D 2009
%P 77-80
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a8/
%G ru
%F TRSPY_2009_264_a8
D. B. Kaledin. Normalization of a~Poisson Algebra Is Poisson. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 77-80. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a8/

[1] Bourbaki N., Eléments de mathématique. Algèbgre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Hermann, Paris, 1964 | MR | Zbl

[2] Beauville A., “Symplectic singularities”, Invent. math., 139 (2000), 541–549 | DOI | MR | Zbl

[3] Seidenberg A., “Derivations and integral closure”, Pacif. J. Math., 16 (1966), 167–173 | MR | Zbl