Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_264_a7, author = {C. Hertling and Yu. I. Manin and C. Teleman}, title = {An {Update} on {Semisimple} {Quantum} {Cohomology} and $F${-Manifolds}}, journal = {Informatics and Automation}, pages = {69--76}, publisher = {mathdoc}, volume = {264}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a7/} }
C. Hertling; Yu. I. Manin; C. Teleman. An Update on Semisimple Quantum Cohomology and $F$-Manifolds. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 69-76. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a7/
[1] Auroux D., Katzarkov L., Orlov D., “Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves”, Invent. math., 166:3 (2006), 537–582 ; arXiv: math/0506166 | DOI | MR | Zbl
[2] Barannikov S., Semi-infinite Hodge structures and mirror symmetry for projective spaces, E-print , 2000 arXiv: math/0010157
[3] Barannikov S., “Semi-infinite variations of Hodge structures and integrable hierarchies of KdV type”, Intern. Math. Res. Not., 2002, no. 19, 973–990 ; arXiv: math/0108148 | DOI | MR | Zbl
[4] Bayer A., “Semisimple quantum cohomology and blow-ups”, Intern. Math. Res. Not., 2004, no. 40, 2069–2083 ; arXiv: math/0403260 | DOI | MR | Zbl
[5] Bayer A., Manin Yu., “(Semi)simple exercises in quantum cohomology”, Proc. Fano Conf. (Torino, Italy, 2002), Univ. Torino, Torino, 2004, 143–173 ; arXiv: math/0103164 | MR | Zbl
[6] Ciolli G., “On the quantum cohomology of some Fano threefolds and a conjecture of Dubrovin”, Intern. J. Math., 16:8 (2005), 823–839 ; arXiv: math/0403300 | DOI | MR | Zbl
[7] Dubrovin B., “Geometry and analytic theory of Frobenius manifolds”, Proc. Intern. Congr. Math., V. 2 (Berlin, 1998), Univ. Bielefeld, Bielefeld, 1998, 315–326 | MR
[8] Givental A., “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics, Progr. Math., 160, Birkhäuser, Boston, 1998, 141–175 | MR | Zbl
[9] Golyshev V. V., “Variatsii Rimana–Rokha”, Izv. RAN. Ser. mat., 65:5 (2001), 3–32 | DOI | MR | Zbl
[10] Golyshev V., A remark on minimal Fano threefolds, E-print , 2008 arXiv: 0803.0031
[11] Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[12] Hertling C., Manin Yu., “Weak Frobenius manifolds”, Intern. Math. Res. Not., 1999, no. 6, 277–286 ; arXiv: math/9810132 | DOI | MR | Zbl
[13] Manin Yu. I., Frobenius manifolds, quantum cohomology, and moduli spaces, AMS Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 ; Manin Yu. I., Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial, M., 2002 | MR | Zbl
[14] Manin Yu. I., “Manifolds with multiplication on the tangent sheaf”, Rend. Mat. Appl. Ser. 7, 26 (2006), 69–85 ; arXiv: math.AG/0502578 | MR | Zbl
[15] Manin Yu. I., “$F$-manifolds with flat structure and Dubrovin's duality”, Adv. Math., 198 (2005), 5–26 | DOI | MR | Zbl
[16] Merkulov S. A., “Operads, deformation theory and $F$-manifolds”, Frobenius manifolds: Quantum cohomology and singularities, eds. C. Hertling, M. Marcolli, Vieweg, Wiesbaden, 2004, 213–251 ; arXiv: math.AG/0210478 | MR | Zbl
[17] Merkulov S. A., “PROP profile of Poisson geometry”, Commun. Math. Phys., 262:1 (2006), 117–135 ; arXiv: math.AG/0401034 | DOI | MR | Zbl
[18] Orlov D. O., “Proizvodnye kategorii kogerentnykh puchkov i motivy”, UMN, 60:6 (2005), 231–232 ; arXiv: math/0512620 | DOI | MR | Zbl
[19] Sabbah C., Isomonodromic deformations and Frobenius manifolds, Springer, Berlin; EDP Sci., Les Ulis, 2007 | MR | Zbl
[20] Teleman C., The structure of 2D semi-simple field theories, E-print , 2007 arXiv: 0712.0160
[21] Zaslow E., “Solitons and helices: the search for a math–physics bridge”, Commun. Math. Phys., 175:2 (1996), 337–375 | DOI | MR | Zbl