Derived Categories of Fano Threefolds
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 116-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the structure of the derived categories of coherent sheaves on Fano threefolds with Picard number 1 and describe a strange relation between derived categories of different threefolds. In the appendix we discuss how the ring of algebraic cycles of a smooth projective variety is related to the Grothendieck group of its derived category.
@article{TRSPY_2009_264_a13,
     author = {A. G. Kuznetsov},
     title = {Derived {Categories} of {Fano} {Threefolds}},
     journal = {Informatics and Automation},
     pages = {116--128},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Derived Categories of Fano Threefolds
JO  - Informatics and Automation
PY  - 2009
SP  - 116
EP  - 128
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/
LA  - ru
ID  - TRSPY_2009_264_a13
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Derived Categories of Fano Threefolds
%J Informatics and Automation
%D 2009
%P 116-128
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/
%G ru
%F TRSPY_2009_264_a13
A. G. Kuznetsov. Derived Categories of Fano Threefolds. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 116-128. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/