Derived Categories of Fano Threefolds
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 116-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the structure of the derived categories of coherent sheaves on Fano threefolds with Picard number 1 and describe a strange relation between derived categories of different threefolds. In the appendix we discuss how the ring of algebraic cycles of a smooth projective variety is related to the Grothendieck group of its derived category.
@article{TRSPY_2009_264_a13,
     author = {A. G. Kuznetsov},
     title = {Derived {Categories} of {Fano} {Threefolds}},
     journal = {Informatics and Automation},
     pages = {116--128},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Derived Categories of Fano Threefolds
JO  - Informatics and Automation
PY  - 2009
SP  - 116
EP  - 128
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/
LA  - ru
ID  - TRSPY_2009_264_a13
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Derived Categories of Fano Threefolds
%J Informatics and Automation
%D 2009
%P 116-128
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/
%G ru
%F TRSPY_2009_264_a13
A. G. Kuznetsov. Derived Categories of Fano Threefolds. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 116-128. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a13/

[1] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 25–44 | MR | Zbl

[2] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. mat., 53:6 (1989), 1183–1205 | MR | Zbl

[3] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, E-print , 1995 arXiv: alg-geom/9506012

[4] Fujita T., “On the structure of polarized varieties with $\Delta$-genera zero”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 22 (1975), 103–115 | MR | Zbl

[5] Iskovskikh V. A., “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 12, VINITI, M., 1979, 59–157 | MR | Zbl

[6] Iskovskikh V. A., Prokhorov Yu. G., “Fano varieties”, Algebraic geometry, V, Encycl. Math. Sci., 47, Springer, Berlin, 1999, 247 pp. | MR | Zbl

[7] Kuznetsov A. G., “Isklyuchitelnyi nabor vektornykh rassloenii na trekhmernykh mnogoobraziyakh Fano $V_{22}$”, Vest. Mosk. un-ta. Matematika. Mekhanika, 1996, no. 3, 41–44 | MR | Zbl

[8] Kuznetsov A., Fano threefolds $V_{22}$, Preprint MPIM1997-24, Max-Planck-Inst., Bonn, 1997

[9] Kuznetsov A. G., “Proizvodnaya kategoriya trekhmernoi kubiki i mnogoobraziya $V_{14}$”, Tr. MIAN, 246, 2004, 183–207 | MR | Zbl

[10] Kuznetsov A. G., “Giperploskie secheniya i proizvodnye kategorii”, Izv. RAN. Ser. mat., 70:3 (2006), 23–128 | DOI | MR | Zbl

[11] Kuznetsov A., “Derived categories of quadric fibrations and intersections of quadrics”, Adv. Math., 218:5 (2008), 1340–1369 | DOI | MR | Zbl

[12] Kuznetsov A., Homological projective duality for Grassmannians of lines, E-print , 2006 arXiv: math.AG/0610957 | MR

[13] Mukai S., “Fano 3-folds”, Complex projective geometry (Trieste, 1989/Bergen, 1989), LMS Lect. Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263 | MR

[14] Mukai S., Umemura H., “Minimal rational threefolds”, Algebraic geometry (Tokyo/Kyoto, 1982), Lect. Notes Math., 1016, Springer, Berlin, 1983, 490–518 | DOI | MR

[15] Orlov D. O., “Isklyuchitelnyi nabor vektornykh rassloenii na mnogoobrazii $V_5$”, Vest. Mosk. un-ta. Matematika. Mekhanika, 1991, no. 5, 69–71 | MR | Zbl