Birational Rigidity of Fano Varieties and Field Extensions
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 103-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note studies the behavior of birational rigidity and universal birational rigidity in extensions of algebraically closed fields.
@article{TRSPY_2009_264_a11,
     author = {J. Koll\'ar},
     title = {Birational {Rigidity} of {Fano} {Varieties} and {Field} {Extensions}},
     journal = {Informatics and Automation},
     pages = {103--108},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a11/}
}
TY  - JOUR
AU  - J. Kollár
TI  - Birational Rigidity of Fano Varieties and Field Extensions
JO  - Informatics and Automation
PY  - 2009
SP  - 103
EP  - 108
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a11/
LA  - en
ID  - TRSPY_2009_264_a11
ER  - 
%0 Journal Article
%A J. Kollár
%T Birational Rigidity of Fano Varieties and Field Extensions
%J Informatics and Automation
%D 2009
%P 103-108
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a11/
%G en
%F TRSPY_2009_264_a11
J. Kollár. Birational Rigidity of Fano Varieties and Field Extensions. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 103-108. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a11/

[1] Birkar C., Cascini P., Hacon C. D., McKernan J., Existence of minimal models for varieties of log general type, E-print , 2006 arXiv: math/0610203

[2] Cheltsov I. A., “Biratsionalno zhestkie mnogoobraziya Fano”, UMN, 60:5 (2005), 71–160 | DOI | MR | Zbl

[3] Cheltsov I., “Fano varieties with many selfmaps”, Adv. Math., 217:1 (2008), 97–124 | DOI | MR | Zbl

[4] Corti A., Mella M., “Birational geometry of terminal quartic 3-folds. I”, Amer. J. Math., 126:4 (2004), 739–761 | DOI | MR | Zbl

[5] Corti A., Reid M., “Foreword”, Explicit birational geometry of 3-folds, LMS Lect. Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 1–20 | MR | Zbl

[6] Iskovskikh V. A., “Biratsionalnaya zhestkost giperpoverkhnostei Fano v ramkakh teorii Mori”, UMN, 56:2 (2001), 3–86 | DOI | MR | Zbl

[7] Kollár J., Mori S., “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl

[8] Kollár J., Rational curves on algebraic varieties, Ergebn. Math. und ihrer Grenzgeb. (3), 32, Springer, Berlin, 1996 | MR

[9] Kollár J., Smith K. E., Corti A., Rational and nearly rational varieties, Cambridge Stud. Adv. Math., 92, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[10] Mella M., “Birational geometry of quartic 3-folds. II: The importance of being $\mathbb Q$-factorial”, Math. Ann., 330:1 (2004), 107–126 | DOI | MR | Zbl

[11] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78 (1956), 401–443 | DOI | MR | Zbl

[12] Shramov C., Birational automorphisms of nodal quartic threefolds, E-print , 2008 arXiv: 0803.4348