Generalized Homological Mirror Symmetry and Cubics
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 94-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an approach to studying Fano manifolds based on Homological Mirror Symmetry. We consider some classical examples from a new point of view.
@article{TRSPY_2009_264_a10,
     author = {L. Katzarkov and V. Przyjalkowski},
     title = {Generalized {Homological} {Mirror} {Symmetry} and {Cubics}},
     journal = {Informatics and Automation},
     pages = {94--102},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a10/}
}
TY  - JOUR
AU  - L. Katzarkov
AU  - V. Przyjalkowski
TI  - Generalized Homological Mirror Symmetry and Cubics
JO  - Informatics and Automation
PY  - 2009
SP  - 94
EP  - 102
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a10/
LA  - en
ID  - TRSPY_2009_264_a10
ER  - 
%0 Journal Article
%A L. Katzarkov
%A V. Przyjalkowski
%T Generalized Homological Mirror Symmetry and Cubics
%J Informatics and Automation
%D 2009
%P 94-102
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a10/
%G en
%F TRSPY_2009_264_a10
L. Katzarkov; V. Przyjalkowski. Generalized Homological Mirror Symmetry and Cubics. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 94-102. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a10/

[1] Abouzaid M., Auroux D., Katzarkov L., Homological mirror symmetry for blowups, Preprint, Massachusetts Inst. Technol., 2008 | MR

[2] Golyshev V. V., “Classification problems and mirror duality”, Surveys in geometry and number theory, LMS Lect. Note Ser., 338, ed. N. Young, Cambridge Univ. Press, Cambridge, 2007, 88–121 ; arXiv: math/0510287 | MR | Zbl

[3] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. mat., 41:3 (1977), 516–562 ; “Трехмерные многообразия Фано. II”, 42:3 (1978), 506–549 | MR | Zbl | MR | Zbl

[4] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Mat. sb., 86(128):1 (1971), 140–166 | MR | Zbl

[5] Kato K., Nakayama Ch., “Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over $\mathbb C$”, Kodai Math. J., 22:2 (1999), 161–186 | DOI | MR | Zbl

[6] Katzarkov L., Kontsevich M., Pantev T., Hodge theoretic aspects of mirror symmetry, E-print , 2008 arXiv: 0806.0107 | MR

[7] Katzarkov L., Przyjalkowski V., “Generalized Homological Mirror Symmetry, perverse sheaves and questions of rationality”, Topology of stratified spaces (Berkeley, MSRI, Sept. 2008), Math. Sci. Res. Inst. Publ., eds. F. Bogomolov, A. Libgober, S. Cappell, Cambridge Univ. Press, Cambridge, 2009 | Zbl

[8] Leung N. C., “Geometric aspects of mirror symmetry (with SYZ for rigid CY manifolds)”, Proc. Intern. Congr. Chin. Math., 2001 ; arXiv: math/0204168 | MR

[9] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. mat., 56:4 (1992), 852–862 | MR | Zbl

[10] Przyjalkowski V., “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory and Phys., 1:4 (2008), 713–728 ; arXiv: 0707.3758 | DOI | MR | Zbl

[11] Sethi S., “Supermanifolds, rigid manifolds and mirror symmetry”, Nucl. Phys. B, 430 (1994), 31–50 ; arXiv: hep-th/9404186 | DOI | MR | Zbl