Spectral Data for Hamiltonian-Minimal Lagrangian Tori in~$\mathbb C\mathrm P^2$
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe spectral data that allow one to find Hamiltonian-minimal Lagrangian tori in $\mathbb C\mathrm P^2$ in terms of theta functions of spectral curves.
@article{TRSPY_2008_263_a8,
     author = {A. E. Mironov},
     title = {Spectral {Data} for {Hamiltonian-Minimal} {Lagrangian} {Tori} in~$\mathbb C\mathrm P^2$},
     journal = {Informatics and Automation},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a8/}
}
TY  - JOUR
AU  - A. E. Mironov
TI  - Spectral Data for Hamiltonian-Minimal Lagrangian Tori in~$\mathbb C\mathrm P^2$
JO  - Informatics and Automation
PY  - 2008
SP  - 120
EP  - 134
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a8/
LA  - ru
ID  - TRSPY_2008_263_a8
ER  - 
%0 Journal Article
%A A. E. Mironov
%T Spectral Data for Hamiltonian-Minimal Lagrangian Tori in~$\mathbb C\mathrm P^2$
%J Informatics and Automation
%D 2008
%P 120-134
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a8/
%G ru
%F TRSPY_2008_263_a8
A. E. Mironov. Spectral Data for Hamiltonian-Minimal Lagrangian Tori in~$\mathbb C\mathrm P^2$. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 120-134. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a8/

[1] Oh Y., “Volume minimization of Lagrangian submanifolds under Hamiltonian deformations”, Math. Ztschr., 212 (1993), 175–192 | DOI | MR | Zbl

[2] Mironov A. E., “O novykh primerakh gamiltonovo-minimalnykh i minimalnykh lagranzhevykh podmnogoobrazii v $\mathbb C^n$ i $\mathbb C\mathrm P^n$”, Mat. sb., 195:1 (2004), 89–102 | MR | Zbl

[3] Hélein F., Romon P., “Hamiltonian stationary Lagrangian surfaces in $\mathbb C^2$”, Commun. Anal. and Geom., 10 (2002), 79–126 | MR | Zbl

[4] McIntosh I., Romon P., The spectral data for Hamiltonian stationary Lagrangian tori in $\mathbb R^4$, E-print , 2007 arxiv: 0707.1767v2[math.DG]

[5] Mironov A. E., “O gamiltonovo-minimalnykh lagranzhevykh torakh v $\mathbb C\mathrm P^2$”, Sib. mat. zhurn., 44:6 (2003), 1324–1328 | MR | Zbl

[6] Ma H., Schmies M., “Examples of Hamiltonian stationary Lagrangian tori in $\mathbb C\mathrm P^2$”, Geom. Dedicata, 118 (2006), 173–183 | DOI | MR | Zbl

[7] Hélein F., Romon P., “Hamiltonian stationary tori in the complex projective plane”, Proc. London Math. Soc., 90 (2005), 472–496 | DOI | MR | Zbl

[8] Ma H., “Hamiltonian stationary Lagrangian surfaces in $\mathbb C\mathrm P^2$”, Ann. Global. Anal. and Geom., 27 (2005), 1–16 | DOI | MR

[9] Mikhailov A. V., “The reduction problem and the inverse scattering method”, Physica D, 3:1 (1981), 73–117 | DOI

[10] Sharipov R. A., “Minimalnye tory v pyatimernoi sfere v $\mathbb C^3$”, TMF, 87:1 (1991), 48–56 | MR | Zbl

[11] Carberry E., McIntosh I., “Minimal Lagrangian 2-tori in $\mathbb C\mathrm P^2$ come in real families of every dimension”, J. London Math. Soc., 69 (2004), 531–544 | DOI | MR | Zbl

[12] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | MR | Zbl

[13] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shrëdingera. Potentsialnye operatory”, DAN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[14] Mironov A. E., “Ierarkhiya uravnenii Veselova–Novikova i integriruemye deformatsii minimalnykh lagranzhevykh torov v $\mathbb C\mathrm P^2$”, Sib. el. mat. izv., 1 (2004), 38–46 | MR | Zbl

[15] Mironov A. E., “Svyaz mezhdu simmetriyami uravneniya Tsitseiki i ierarkhiei Veselova–Novikova”, Mat. zametki, 82:4 (2007), 637–640 | MR | Zbl