Lax Operator Algebras and Integrable Hierarchies
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 216-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study applications of a new class of infinite-dimensional Lie algebras, called Lax operator algebras, which goes back to the works by I. Krichever and S. Novikov on finite-zone integration related to holomorphic vector bundles and on Lie algebras on Riemann surfaces. Lax operator algebras are almost graded Lie algebras of current type. They were introduced by I. Krichever and the author as a development of the theory of Lax operators on Riemann surfaces due to I. Krichever, and further investigated in a joint paper by M. Schlichenmaier and the author. In this article we construct integrable hierarchies of Lax equations of that type.
@article{TRSPY_2008_263_a14,
     author = {O. K. Sheinman},
     title = {Lax {Operator} {Algebras} and {Integrable} {Hierarchies}},
     journal = {Informatics and Automation},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a14/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Lax Operator Algebras and Integrable Hierarchies
JO  - Informatics and Automation
PY  - 2008
SP  - 216
EP  - 226
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a14/
LA  - ru
ID  - TRSPY_2008_263_a14
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Lax Operator Algebras and Integrable Hierarchies
%J Informatics and Automation
%D 2008
%P 216-226
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a14/
%G ru
%F TRSPY_2008_263_a14
O. K. Sheinman. Lax Operator Algebras and Integrable Hierarchies. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 216-226. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a14/

[1] Garland H., “The arithmetic theory of loop groups”, Publ. Math. IHES, 52 (1980), 5–136 | MR | Zbl

[2] Kats V. G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR. Ser. mat., 32:6 (1968), 1323–1367 | MR | Zbl

[3] Kac V. G., Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[4] Krichever I. M., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[5] Krichever I. M., “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Moscow Math. J., 2 (2002), 717–752 ; arxiv: hep-th/0112096v1 | MR | Zbl

[6] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[7] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva–Petviashvili (KP). I”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | MR | Zbl

[8] Krichever I. M., “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[9] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl

[10] Krichever I. M., Sheinman O. K., “Algebry operatorov Laksa”, Funkts. analiz i ego pril., 41:4 (2007), 46–59 | MR | Zbl

[11] Moody R. V., “Euclidean Lie algebras”, Canad. J. Math., 21 (1969), 1432–1454 | MR | Zbl

[12] Schlichenmaier M., “Local cocycles and central extensions for multipoint algebras of Krichever–Novikov type”, J. reine und angew. Math., 559 (2003), 53–94 | MR | Zbl

[13] Schlichenmaier M., “Higher genus affine algebras of Krichever–Novikov type”, Moscow Math. J., 3:4 (2003), 1395–1427 | MR | Zbl

[14] Schlichenmaier M., Sheinman O. K., Central extensions of Lax operator algebras, E-print , 2007 arxiv: 0711.4688v1[math.QA] | MR

[15] Sheinman O. K., “Affine Krichever–Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar 2002–2003, AMS Transl. Ser. 2, 212, eds. V. M. Buchstaber, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2004, 297–316 ; arxiv: math/0304020v1[math.RT] | MR | Zbl

[16] Sheinman O. K., “On certain current algebras related to finite-zone integration”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar 2006–2007, AMS Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[17] Tyurin A. N., “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. mat., 29:3 (1965), 657–688 | MR | Zbl