Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_263_a12, author = {A. G. Sergeev}, title = {Quantization of the {Universal} {Teichm\"uller} {Space}}, journal = {Informatics and Automation}, pages = {173--200}, publisher = {mathdoc}, volume = {263}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a12/} }
A. G. Sergeev. Quantization of the Universal Teichm\"uller Space. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 173-200. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a12/
[1] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[2] Ahlfors L. V., “Some remarks on Teichmüller's space of Riemann surfaces”, Ann. Math. Ser. 2, 74 (1961), 171–191 | DOI | MR | Zbl
[3] Bowen R., “Hausdorff dimension of quasi-circles”, Publ. Math. IHES, 50 (1979), 11–25 | MR | Zbl
[4] Connes A., Géométrie non commutative, Intereditions, Paris, 1990 | MR | Zbl
[5] Lehto O., Univalent functions and Teichmüller spaces, Springer, Berlin, 1987 | MR | Zbl
[6] Nag S., The complex analytic theory of Teichmüller spaces, J. Wiley and Sons, New York, 1988 | MR | Zbl
[7] Nag S., “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc., 26 (1992), 280–287 | DOI | MR | Zbl
[8] Nag S., Sullivan D., “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32 (1995), 1–34 | MR | Zbl
[9] Nag S., Verjovsky A., “$\operatorname{Diff}(S^1)$ and the Teichmüller spaces”, Commun. Math. Phys., 130 (1990), 123–138 | DOI | MR | Zbl
[10] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR
[11] Power S. C., Hankel operators on Hilbert space, Res. Notes Math., 64, Pitman, Boston, 1982 | MR | Zbl
[12] Sniatycki J., Geometric quantization and quantum mechanics, Springer, New York, 1980 | MR | Zbl
[13] Segal G., “Unitary representations of some infinite-dimensional groups”, Commun. Math. Phys., 80 (1981), 301–342 | DOI | MR | Zbl
[14] Shale D., “Linear symmetries of free boson fields”, Trans. Amer. Math. Soc., 103 (1962), 149–167 | DOI | MR | Zbl
[15] Tuynman G. M., Mathematical structures in field theories, Proc. sem. 1983–1985, V. 1, Geometric quantization, CWI Syllabus, 8, Math. Centr., Amsterdam, 1985 | MR | Zbl
[16] Woodhouse N., Geometric quantization, Clarendon Press, Oxford, 1980 | MR | Zbl