Bounds for Codes by Semidefinite Programming
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 143-158

Voir la notice de l'article provenant de la source Math-Net.Ru

Delsarte's method and its extensions allow one to consider the upper bound problem for codes in two-point homogeneous spaces as a linear programming problem with perhaps infinitely many variables, which are the distance distribution. We show that using as variables power sums of distances, this problem can be considered as a finite semidefinite programming problem. This method allows one to improve some linear programming upper bounds. In particular, we obtain new bounds of one-sided kissing numbers.
@article{TRSPY_2008_263_a10,
     author = {O. R. Musin},
     title = {Bounds for {Codes} by {Semidefinite} {Programming}},
     journal = {Informatics and Automation},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a10/}
}
TY  - JOUR
AU  - O. R. Musin
TI  - Bounds for Codes by Semidefinite Programming
JO  - Informatics and Automation
PY  - 2008
SP  - 143
EP  - 158
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a10/
LA  - en
ID  - TRSPY_2008_263_a10
ER  - 
%0 Journal Article
%A O. R. Musin
%T Bounds for Codes by Semidefinite Programming
%J Informatics and Automation
%D 2008
%P 143-158
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a10/
%G en
%F TRSPY_2008_263_a10
O. R. Musin. Bounds for Codes by Semidefinite Programming. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 143-158. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a10/