Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
Informatics and Automation, Optimal control, Tome 262 (2008), pp. 103-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of best approximation of a convex compact set in a finite-dimensional space by ellipsoids with respect to a special measure of deviation of an ellipsoid from a compact set is considered. An analytic description of ellipsoids of best approximation is given.
@article{TRSPY_2008_262_a8,
     author = {Yu. N. Kiselev},
     title = {Approximation of {Convex} {Compact} {Sets} by {Ellipsoids.} {Ellipsoids} of {Best} {Approximation}},
     journal = {Informatics and Automation},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/}
}
TY  - JOUR
AU  - Yu. N. Kiselev
TI  - Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
JO  - Informatics and Automation
PY  - 2008
SP  - 103
EP  - 126
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/
LA  - ru
ID  - TRSPY_2008_262_a8
ER  - 
%0 Journal Article
%A Yu. N. Kiselev
%T Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
%J Informatics and Automation
%D 2008
%P 103-126
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/
%G ru
%F TRSPY_2008_262_a8
Yu. N. Kiselev. Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation. Informatics and Automation, Optimal control, Tome 262 (2008), pp. 103-126. http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/