Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
Informatics and Automation, Optimal control, Tome 262 (2008), pp. 103-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of best approximation of a convex compact set in a finite-dimensional space by ellipsoids with respect to a special measure of deviation of an ellipsoid from a compact set is considered. An analytic description of ellipsoids of best approximation is given.
@article{TRSPY_2008_262_a8,
     author = {Yu. N. Kiselev},
     title = {Approximation of {Convex} {Compact} {Sets} by {Ellipsoids.} {Ellipsoids} of {Best} {Approximation}},
     journal = {Informatics and Automation},
     pages = {103--126},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/}
}
TY  - JOUR
AU  - Yu. N. Kiselev
TI  - Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
JO  - Informatics and Automation
PY  - 2008
SP  - 103
EP  - 126
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/
LA  - ru
ID  - TRSPY_2008_262_a8
ER  - 
%0 Journal Article
%A Yu. N. Kiselev
%T Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
%J Informatics and Automation
%D 2008
%P 103-126
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/
%G ru
%F TRSPY_2008_262_a8
Yu. N. Kiselev. Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation. Informatics and Automation, Optimal control, Tome 262 (2008), pp. 103-126. http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a8/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | Zbl

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[3] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[4] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988 | MR

[5] Pogorelov A. V., Differentsialnaya geometriya, Nauka, M., 1975 | MR | Zbl

[6] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR | Zbl

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986 | MR | Zbl

[8] Blagodatskikh V. I., Lineinaya teoriya optimalnogo upravleniya, Izd-vo Mosk. un-ta, M., 1978

[9] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001

[10] Kiselëv Yu. N., Lineinaya teoriya optimalnogo bystrodeistviya s vozmuscheniyami, Izd-vo Mosk. un-ta, M., 1986

[11] Kiselëv Yu. N., Optimalnoe upravlenie, Izd-vo Mosk. un-ta, M., 1988

[12] Kiselëv Yu. N., “Bystroskhodyaschiesya algoritmy resheniya lineinoi zadachi bystrodeistviya”, Kibernetika, 1990, no. 6, 47–57 | MR | Zbl

[13] Kiselëv Yu. N., Avvakumov S. N., Orlov M. V., Optimalnoe upravlenie. Lineinaya teoriya i prilozheniya, Maks Press, M., 2007

[14] Kiselëv Yu. N., Khabarov N. V., “Algoritmy s kvadratichnoi skorostyu skhodimosti v zadache zakhvata tochki semeistvom vypuklykh tel”, Nelineinaya dinamika i upravlenie, Vyp. 4, Fizmatlit, M., 2004, 241–256

[15] Kiselëv Yu. N., Khabarov N. V., “O kvadratichnoi skorosti skhodimosti skhemy proektirovaniya v zadache zakhvata tochki semeistvom vypuklykh tel”, Issledovano v Rossii: El. zhurn., 6:170 (2003), 2068–2077

[16] Kiselëv Yu. N., Khabarov N. V., “Soprikasayuschiesya ellipsoidy v algoritmakh resheniya lineinoi zadachi bystrodeistviya”, Avtomatika – 2003, Mater. 10-i Mezhdunar. konf., T. 1, Sevastop. gos. tekhn. un-t, Sevastopol, 2003, 49–50

[17] Kiselëv Yu. N., “Priblizhenie gladkogo vypuklogo kompakta soprikasayuschimisya ellipsoidami”, Avtomatika – 2001, Mater. 9-i Mezhdunar. konf., T. 1, Odes. gos. politekhn. un-t, Odessa, 2001, 31–32