Invariant and Stably Invariant Sets for Differential Inclusions
Informatics and Automation, Optimal control, Tome 262 (2008), pp. 202-221

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss conditions, in terms of Lyapunov functions, under which a given set in the extended phase space of a nonautonomous differential inclusion becomes positively invariant, invariant, stably invariant, or asymptotically stably invariant. We also derive conditions under which the integral funnel of a differential inclusion is recurrent in time. A series of examples are considered.
@article{TRSPY_2008_262_a15,
     author = {E. A. Panasenko and E. L. Tonkov},
     title = {Invariant and {Stably} {Invariant} {Sets} for {Differential} {Inclusions}},
     journal = {Informatics and Automation},
     pages = {202--221},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a15/}
}
TY  - JOUR
AU  - E. A. Panasenko
AU  - E. L. Tonkov
TI  - Invariant and Stably Invariant Sets for Differential Inclusions
JO  - Informatics and Automation
PY  - 2008
SP  - 202
EP  - 221
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a15/
LA  - ru
ID  - TRSPY_2008_262_a15
ER  - 
%0 Journal Article
%A E. A. Panasenko
%A E. L. Tonkov
%T Invariant and Stably Invariant Sets for Differential Inclusions
%J Informatics and Automation
%D 2008
%P 202-221
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a15/
%G ru
%F TRSPY_2008_262_a15
E. A. Panasenko; E. L. Tonkov. Invariant and Stably Invariant Sets for Differential Inclusions. Informatics and Automation, Optimal control, Tome 262 (2008), pp. 202-221. http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a15/