Global Dynamics of Morse--Smale Systems
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 115-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of relatively recent results on the classification of Morse–Smale dynamical systems on closed manifolds. It also contains both old and relatively recent results on the relationship between the topology of the ambient manifold and the dynamical characteristics of Morse–Smale systems.
@article{TRSPY_2008_261_a9,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Global {Dynamics} of {Morse--Smale} {Systems}},
     journal = {Informatics and Automation},
     pages = {115--139},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a9/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Global Dynamics of Morse--Smale Systems
JO  - Informatics and Automation
PY  - 2008
SP  - 115
EP  - 139
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a9/
LA  - ru
ID  - TRSPY_2008_261_a9
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Global Dynamics of Morse--Smale Systems
%J Informatics and Automation
%D 2008
%P 115-139
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a9/
%G ru
%F TRSPY_2008_261_a9
E. V. Zhuzhoma; V. S. Medvedev. Global Dynamics of Morse--Smale Systems. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 115-139. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a9/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl

[2] Anosov D. V., “Grubye sistemy”, Tr. MIAN, 169, 1985, 59–93 | MR

[3] Anosov D. V., “Iskhodnye ponyatiya. Elementarnaya teoriya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178, 178–204

[4] Anosov D. V., Solodov V. V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR | Zbl

[5] Aranson S. Kh., “Traektorii na neorientiruemykh dvumernykh mnogoobraziyakh”, Mat. sb., 80:3 (1969), 314–333 | MR | Zbl

[6] Aranson S. Kh., Topologicheskaya klassifikatsiya sloenii s osobennostyami i gomeomorfizmov s invariantnymi sloeniyami na zamknutykh poverkhnostyakh. Ch. 1: Sloeniya, Dep. v VINITI GGU No 6887 V-88, Gork. gos. un-t, Gorkii, 1988, 194 pp.; Ч. 2: Гомеоморфизмы, Деп. в ВИНИТИ ГГУ No 1043 В-89, 1989, 137 с.

[7] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 41:1 (1986), 149–169 | MR | Zbl

[8] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:1 (1990), 3–32 | MR | Zbl

[9] Aranson S. Kh., Grines V. Z., “Kaskady na poverkhnostyakh”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 148–187 | MR | Zbl

[10] Aranson S. Kh., Medvedev V. S., “Regulyarnye komponenty gomeomorfizmov $n$-mernoi sfery”, Mat. sb., 85:1 (1971), 3–17 | MR | Zbl

[11] Afraimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa–Smeila”, Tr. Mosk. mat. o-va, 28 (1973), 181–214 | Zbl

[12] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. I”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1985, 22–38 ; Sel. Math. Sov., 11 (1992), 1–11 ; “II”, Методы качественной теории дифференциальных уравнений, ред. Е. А. Леонтович-Андронова, ГГУ, Горький, 1987, 24–32 ; Sel. Math. Sov., 11 (1992), 13–17 | MR | MR | MR | MR

[13] Sel. Math. Sov., 11 (1992), 19–23 | MR | MR

[14] Bonatti Kh., Grines V. Z., Medvedev V. C., Peku E., “O topologicheskoi klassifikatsii gradientnopodobnykh diffeomorfizmov bez geteroklinicheskikh krivykh na trekhmernykh mnogoobraziyakh”, DAN, 377:2 (2001), 151–155 | MR | Zbl

[15] Bonatti Kh., Grines V. Z., Medvedev V. C., Peku E., “O diffeomorfizmakh Morsa–Smeila bez geteroklinicheskikh peresechenii na trekhmernykh mnogoobraziyakh”, Tr. MIAN, 236, 2002, 66–78 | MR | Zbl

[16] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl

[17] Borevich E. Z., “Usloviya topologicheskoi ekvivalentnosti dvumernykh diffeomorfizmov Morsa–Smeila”, Dif. uravneniya, 17 (1981), 1481–1482 | MR | Zbl

[18] Vlasenko I., “Polnyi invariant diffeomorfizma Morsa–Smeila na dvumernykh mnogoobraziyakh”, Nekotorye voprosy sovremennoi matematiki, ed. V. V. Sharko, In-t matematiki NAN Ukrainy, Kiev, 1998, 60–93 | MR

[19] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl

[20] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., “Novye sootnosheniya dlya potokov i diffeomorfizmov Morsa–Smeila”, DAN, 382:6 (2002), 730–733 | MR | Zbl

[21] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Mat. sb., 194:7 (2003), 25–56 | MR | Zbl

[22] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Mat. zametki, 74:3 (2003), 369–386 | MR | Zbl

[23] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., “Diffeomorfizmy Morsa–Smeila bez geteroklinicheskikh tochek na $n$-mernykh mnogoobraziyakh”, Tr. Srednevolzh. mat. o-va, 8:1 (2006), 200–204 | Zbl

[24] Grines V. Z., Medvedev V. C., “O topologicheskoi sopryazhennosti trekhmernykh gradientnopodobnykh diffeomorfizmov s trivialno vlozhennym mnozhestvom separatris sedlovykh nepodvizhnykh tochek”, Mat. zametki, 66:6 (1999), 945–948 | MR | Zbl

[25] Gurevich E. Ya., “O topologicheskoi sopryazhennosti diffeomorfizmov Morsa–Smeila na $n$-mernykh mnogoobraziyakh bez geteroklinicheskikh peresechenii”, Tr. Srednevolzh. mat. o-va, 3–4:1 (2002), 252–255

[26] Gurevich E. Ya., “O diffeomorfizmakh Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei 3”, Tr. Srednevolzh. mat. o-va, 5:1 (2003), 161–165

[27] Gurevich E. Ya., Medvedev V. S., “O mnogoobraziyakh razmernosti $n$, dopuskayuschikh diffeomorfizmy s sedlovymi tochkami indeksov 1 i $n-1$”, Tr. Srednevolzh. mat. o-va, 8:1 (2006), 204–208 | Zbl

[28] Zhirov A. Yu., “Giperbolicheskie attraktory diffeomorfizmov orientiruemykh poverkhnostei”, Ch. 1. Kodirovanie, klassifikatsiya i nakrytiya, Mat. sb., 185:6 (1994), 3–50 ; Ч. 2. Перечисление и применение к псевдоаносовским диффеоморфизмам, Мат. сб., 185:9 (1994), 29–80 ; Ч. 3. Алгоритм классификации, Мат. сб., 186:2 (1995), 59–82 | MR | Zbl | MR | Zbl | MR | Zbl

[29] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, DAN SSSR, 14:5 (1937), 251–257

[30] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955), 557–560 | MR | Zbl

[31] Maier A. G., “Grubye preobrazovaniya okruzhnosti v okruzhnost”, Uchen. zap. Gork. un-ta, 1939, no. 12, 215–229

[32] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl

[33] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Mat. sb., 189:8 (1998), 93–140 | MR | Zbl

[34] Pliss V. A., “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vestn. LGU. Ser. mat., mekh., astron., 13:3 (1960), 15–23 | MR | Zbl

[35] Pochinka O. V., “O topologicheskoi sopryazhennosti prosteishikh diffeomorfizmov Morsa–Smeila s konechnym chislom geteroklinicheskikh orbit na mnogoobrazii $S^3$”, Tr. Srednevolzh. mat. o-va, 3–4:1 (2002), 138–142

[36] Pochinka O. V., Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh, Dis. $\dots$ kand. fiz.-mat. nauk, Nizhegorod. gos. un-t, N. Novgorod, 2003

[37] Pochinka O. V., Talanova E. A., “Lokalnaya skhema gradientnopodobnykh diffeomorfizmov na 3-mnogoobraziyakh”, Tr. Srednevolzh. mat. o-va, 8:1 (2006), 288–294 | Zbl

[38] Prishlyak A. O., “Vektornye polya Morsa–Smeila bez zamknutykh traektorii na trekhmernykh mnogoobraziyakh”, Mat. zametki, 71:2 (2002), 254–260 | MR | Zbl

[39] Sinai Ya. G., “Markovskie razbieniya i U-diffeomorfizmy”, Funkts. analiz i ego pril., 2:1 (1968), 64–89 | MR | Zbl

[40] Sinai Ya. G., “Postroenie markovskikh razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 70–80 | MR | Zbl

[41] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Mat. sb., 181:2 (1990), 212–239 | MR | Zbl

[42] Aranson S. Kh., Belitsky G. R., Zhuzhoma E. V., Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[43] Asimov D., “Round handles and non-singular Morse–Smale flows”, Ann. Math. Ser. 2, 102 (1975), 41–54 | DOI | MR | Zbl

[44] Batterson S., “The dynamics of Morse–Smale diffeomorphisms on the torus”, Trans. Amer. Math. Soc., 256 (1979), 395–403 | DOI | MR | Zbl

[45] Batterson S., “Orientation-reversing Morse–Smale diffeomorphisms on the torus”, Trans. Amer. Math. Soc., 264 (1981), 29–37 | DOI | MR | Zbl

[46] Batterson S., Handel M., Narasimhan C., “Orientation reversing Morse–Smale diffeomorphisms of $S^2$”, Invent. math., 64 (1981), 345–356 | DOI | MR | Zbl

[47] Béguin F., Smale diffeomorphisms of surfaces: an algorithm for the conjugacy problem, Preprint, Univ. Bourgogne, Dijon, 1999

[48] Blanchard P., Franks J., “The dynamical complexity of orientation reversing homeomorphisms of surfaces”, Invent. math., 62 (1980), 333–339 | DOI | MR | Zbl

[49] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6 (2000), 579–602 | DOI | MR | Zbl

[50] Bonatti C., Grines V., Langevin R., “Dynamical systems in dimension 2 and 3: conjugacy invariants and classification”, Comput. and Appl. Math., 20 (2001), 11–50 | MR | Zbl

[51] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topol. and Appl., 117 (2002), 335–344 | DOI | MR | Zbl

[52] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43 (2004), 369–391 | DOI | MR | Zbl

[53] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. math. France, Paris, 1998 | MR | Zbl

[54] Bowen R., “Topological entropy and axiom A”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 23–41 | MR

[55] Bowen R., “Periodic points and measures for axiom A diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 337–397 | DOI | MR

[56] Cantrell J. C., Edwards C. H., “Almost locally polyhedral curves in Euclidean $n$-space”, Trans. Amer. Math. Soc., 107 (1963), 451–457 | DOI | MR | Zbl

[57] Fleitas G., “Classification of gradient-like flows in dimensions two and three”, Bol. Soc. Brasil. Mat., 6 (1975), 155–183 | DOI | MR | Zbl

[58] Fox R. H., Artin E., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 49 (1948), 979–990 | DOI | MR | Zbl

[59] Franks J. M., “Some smooth maps with infinitely many hyperbolic periodic points”, Trans. Amer. Math. Soc., 226 (1977), 175–179 | DOI | MR | Zbl

[60] Franks J. M., “The periodic structure of non-singular Morse–Smale flows”, Comment. Math. Helv., 53 (1978), 279–294 | DOI | MR | Zbl

[61] Franks J. M., Homology and dynamical systems, CBMS Reg. Conf. Ser. Math., 49, Amer. Math. Soc., Providence, RI, 1982 | MR

[62] Grines V., Medvedev V., Zhuzhoma E., “Global dynamics of Morse–Smale diffeomorphisms”, Differential equations and dynamical systems, Intern. Conf. (Suzdal, Russia, 10–15 June, 2006), Abstr., Vladimir State Univ., Vladimir, 2006, 264

[63] Gutierrez C., “Structural stability for flows on the torus with a cross-cap”, Trans. Amer. Math. Soc., 241 (1978), 311–320 | DOI | MR | Zbl

[64] Gutierrez C., de Melo W., “The connected components of Morse–Smale vector fields on two manifolds”, Geometry and topology, Lect. Notes Math., 597, Springer, Berlin, 1977, 230–251 | MR

[65] Handel M., “The entropy of orientation reversing homeomorphisms of surfaces”, Topology, 21 (1982), 291–296 | DOI | MR | Zbl

[66] Langevin R., “Quelques nouveaux invariants des difféomorphismes Morse–Smale d'une surface”, Ann. Inst. Fourier, 43 (1993), 265–278 | MR | Zbl

[67] Markley N. G., “The Poincaré–Bendixon theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl

[68] Morgan J. W., “Non-singular Morse–Smale flows on 3-dimensional manifolds”, Topology, 18 (1979), 41–53 | DOI | MR | Zbl

[69] Narasimhan C. C., “The periodic behavior of Morse–Smale diffeomorphisms on compact surfaces”, Trans. Amer. Math. Soc., 248 (1979), 145–169 | DOI | MR | Zbl

[70] Nikolaev I., “Graphs and flows on surfaces”, Ergod. Theory and Dyn. Syst., 18 (1998), 207–220 | DOI | MR | Zbl

[71] Nikolaev I., Zhuzhoma E., Flows on 2-dimensional manifolds, Lect. Notes Math., 1705, Springer, Berlin, 1999 | MR | Zbl

[72] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR

[73] Palis J., Smale S., “Structural stability theorems”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 | MR

[74] Peixoto M. M., “On structural stability”, Ann. Math. Ser. 2, 69 (1959), 199–222 | DOI | MR | Zbl

[75] Peixoto M. M., “Structural stability on two-dimensional manifolds”, Topology, 1 (1962), 101–120 | DOI | MR | Zbl

[76] Peixoto M. M., “Structural stability on two-dimensional manifolds. A further remark”, Topology, 2 (1963), 179–180 | DOI | MR | Zbl

[77] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador, Brazil, 1971), Acad. Press, New York–London, 1973, 389–419 | MR

[78] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl

[79] Plachta L., “Chord diagrams in the classification of Morse–Smale flows on 2-manifolds”, Knot theory, Banach Center Publ., 42, Pol. Acad. Sci., Inst. Math., Warsaw, 1998, 255–273 | MR | Zbl

[80] Plachta L., “The combinatorics of gradient-like flows and foliations on closed surfaces. I: Topological classification”, Topol. and Appl., 128 (2003), 63–91 | DOI | MR | Zbl

[81] Pochinka O., “On topological conjugacy of simplest Morse–Smale diffeomorphisms on $S^3$ with the finite number of heteroclinic orbits”, Progress in nonlinear scince, Proc. Intern. Conf. (Nizhni Novgorod, 2001), V. 1, Inst. Appl. Phys. RAS, Nizhni Novgorod, 2002, 338–345 | MR

[82] Sasano K., “Links of closed orbits of nonsingular Morse–Smale flows”, Proc. Amer. Math. Soc., 88 (1983), 727–734 | DOI | MR | Zbl

[83] Shub M., “Morse–Smale diffeomorphisms are unipotent on homology”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador, Brazil, 1971), Acad. Press, New York–London, 1973, 489–491 | MR

[84] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 14 (1975), 109–132 | DOI | MR | Zbl

[85] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[86] Smale S., “The generalized Poincaré conjecture in higher dimensions”, Bull. Amer. Math. Soc., 66 (1960), 373–375 | DOI | MR | Zbl

[87] Smale S., “On gradient dynamical systems”, Ann. Math. Ser. 2, 74 (1961), 199–206 | DOI | MR | Zbl

[88] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl

[89] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR | MR

[90] Vlasenko I., “On the relations on the set of heteroclinic points of Morse–Smale diffeomorphisms on 2-manifolds”, Meth. Funct. Anal. and Topol., 5:3 (1999), 90–96 | MR | Zbl

[91] Wada M., “Closed orbits of non-singular Morse–Smale flows on $S^3$”, J. Math. Soc. Japan., 41 (1989), 405–413 | DOI | MR | Zbl

[92] Wang X., “The $C^*$-algebras of Morse–Smale flows on two-manifolds”, Ergod. Theory and Dyn. Syst., 10 (1990), 565–597 | MR | Zbl

[93] Yano K., “A note on non-singular Morse–Smale flows on $S^3$”, Proc. Japan Acad. A, 58 (1982), 447–450 | DOI | MR | Zbl