Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_261_a9, author = {E. V. Zhuzhoma and V. S. Medvedev}, title = {Global {Dynamics} of {Morse--Smale} {Systems}}, journal = {Informatics and Automation}, pages = {115--139}, publisher = {mathdoc}, volume = {261}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a9/} }
E. V. Zhuzhoma; V. S. Medvedev. Global Dynamics of Morse--Smale Systems. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 115-139. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a9/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl
[2] Anosov D. V., “Grubye sistemy”, Tr. MIAN, 169, 1985, 59–93 | MR
[3] Anosov D. V., “Iskhodnye ponyatiya. Elementarnaya teoriya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178, 178–204
[4] Anosov D. V., Solodov V. V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR | Zbl
[5] Aranson S. Kh., “Traektorii na neorientiruemykh dvumernykh mnogoobraziyakh”, Mat. sb., 80:3 (1969), 314–333 | MR | Zbl
[6] Aranson S. Kh., Topologicheskaya klassifikatsiya sloenii s osobennostyami i gomeomorfizmov s invariantnymi sloeniyami na zamknutykh poverkhnostyakh. Ch. 1: Sloeniya, Dep. v VINITI GGU No 6887 V-88, Gork. gos. un-t, Gorkii, 1988, 194 pp.; Ч. 2: Гомеоморфизмы, Деп. в ВИНИТИ ГГУ No 1043 В-89, 1989, 137 с.
[7] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 41:1 (1986), 149–169 | MR | Zbl
[8] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:1 (1990), 3–32 | MR | Zbl
[9] Aranson S. Kh., Grines V. Z., “Kaskady na poverkhnostyakh”, Dinamicheskie sistemy – 9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 148–187 | MR | Zbl
[10] Aranson S. Kh., Medvedev V. S., “Regulyarnye komponenty gomeomorfizmov $n$-mernoi sfery”, Mat. sb., 85:1 (1971), 3–17 | MR | Zbl
[11] Afraimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa–Smeila”, Tr. Mosk. mat. o-va, 28 (1973), 181–214 | Zbl
[12] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. I”, Metody kachestvennoi teorii differentsialnykh uravnenii, ed. E. A. Leontovich-Andronova, GGU, Gorkii, 1985, 22–38 ; Sel. Math. Sov., 11 (1992), 1–11 ; “II”, Методы качественной теории дифференциальных уравнений, ред. Е. А. Леонтович-Андронова, ГГУ, Горький, 1987, 24–32 ; Sel. Math. Sov., 11 (1992), 13–17 | MR | MR | MR | MR
[13] Sel. Math. Sov., 11 (1992), 19–23 | MR | MR
[14] Bonatti Kh., Grines V. Z., Medvedev V. C., Peku E., “O topologicheskoi klassifikatsii gradientnopodobnykh diffeomorfizmov bez geteroklinicheskikh krivykh na trekhmernykh mnogoobraziyakh”, DAN, 377:2 (2001), 151–155 | MR | Zbl
[15] Bonatti Kh., Grines V. Z., Medvedev V. C., Peku E., “O diffeomorfizmakh Morsa–Smeila bez geteroklinicheskikh peresechenii na trekhmernykh mnogoobraziyakh”, Tr. MIAN, 236, 2002, 66–78 | MR | Zbl
[16] Bonatti Kh., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl
[17] Borevich E. Z., “Usloviya topologicheskoi ekvivalentnosti dvumernykh diffeomorfizmov Morsa–Smeila”, Dif. uravneniya, 17 (1981), 1481–1482 | MR | Zbl
[18] Vlasenko I., “Polnyi invariant diffeomorfizma Morsa–Smeila na dvumernykh mnogoobraziyakh”, Nekotorye voprosy sovremennoi matematiki, ed. V. V. Sharko, In-t matematiki NAN Ukrainy, Kiev, 1998, 60–93 | MR
[19] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl
[20] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., “Novye sootnosheniya dlya potokov i diffeomorfizmov Morsa–Smeila”, DAN, 382:6 (2002), 730–733 | MR | Zbl
[21] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Mat. sb., 194:7 (2003), 25–56 | MR | Zbl
[22] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Mat. zametki, 74:3 (2003), 369–386 | MR | Zbl
[23] Grines V. Z., Zhuzhoma E. V., Medvedev V. C., “Diffeomorfizmy Morsa–Smeila bez geteroklinicheskikh tochek na $n$-mernykh mnogoobraziyakh”, Tr. Srednevolzh. mat. o-va, 8:1 (2006), 200–204 | Zbl
[24] Grines V. Z., Medvedev V. C., “O topologicheskoi sopryazhennosti trekhmernykh gradientnopodobnykh diffeomorfizmov s trivialno vlozhennym mnozhestvom separatris sedlovykh nepodvizhnykh tochek”, Mat. zametki, 66:6 (1999), 945–948 | MR | Zbl
[25] Gurevich E. Ya., “O topologicheskoi sopryazhennosti diffeomorfizmov Morsa–Smeila na $n$-mernykh mnogoobraziyakh bez geteroklinicheskikh peresechenii”, Tr. Srednevolzh. mat. o-va, 3–4:1 (2002), 252–255
[26] Gurevich E. Ya., “O diffeomorfizmakh Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei 3”, Tr. Srednevolzh. mat. o-va, 5:1 (2003), 161–165
[27] Gurevich E. Ya., Medvedev V. S., “O mnogoobraziyakh razmernosti $n$, dopuskayuschikh diffeomorfizmy s sedlovymi tochkami indeksov 1 i $n-1$”, Tr. Srednevolzh. mat. o-va, 8:1 (2006), 204–208 | Zbl
[28] Zhirov A. Yu., “Giperbolicheskie attraktory diffeomorfizmov orientiruemykh poverkhnostei”, Ch. 1. Kodirovanie, klassifikatsiya i nakrytiya, Mat. sb., 185:6 (1994), 3–50 ; Ч. 2. Перечисление и применение к псевдоаносовским диффеоморфизмам, Мат. сб., 185:9 (1994), 29–80 ; Ч. 3. Алгоритм классификации, Мат. сб., 186:2 (1995), 59–82 | MR | Zbl | MR | Zbl | MR | Zbl
[29] Leontovich E. A., Maier A. G., “O traektoriyakh, opredelyayuschikh kachestvennuyu strukturu razbieniya sfery na traektorii”, DAN SSSR, 14:5 (1937), 251–257
[30] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955), 557–560 | MR | Zbl
[31] Maier A. G., “Grubye preobrazovaniya okruzhnosti v okruzhnost”, Uchen. zap. Gork. un-ta, 1939, no. 12, 215–229
[32] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl
[33] Oshemkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Mat. sb., 189:8 (1998), 93–140 | MR | Zbl
[34] Pliss V. A., “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vestn. LGU. Ser. mat., mekh., astron., 13:3 (1960), 15–23 | MR | Zbl
[35] Pochinka O. V., “O topologicheskoi sopryazhennosti prosteishikh diffeomorfizmov Morsa–Smeila s konechnym chislom geteroklinicheskikh orbit na mnogoobrazii $S^3$”, Tr. Srednevolzh. mat. o-va, 3–4:1 (2002), 138–142
[36] Pochinka O. V., Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh, Dis. $\dots$ kand. fiz.-mat. nauk, Nizhegorod. gos. un-t, N. Novgorod, 2003
[37] Pochinka O. V., Talanova E. A., “Lokalnaya skhema gradientnopodobnykh diffeomorfizmov na 3-mnogoobraziyakh”, Tr. Srednevolzh. mat. o-va, 8:1 (2006), 288–294 | Zbl
[38] Prishlyak A. O., “Vektornye polya Morsa–Smeila bez zamknutykh traektorii na trekhmernykh mnogoobraziyakh”, Mat. zametki, 71:2 (2002), 254–260 | MR | Zbl
[39] Sinai Ya. G., “Markovskie razbieniya i U-diffeomorfizmy”, Funkts. analiz i ego pril., 2:1 (1968), 64–89 | MR | Zbl
[40] Sinai Ya. G., “Postroenie markovskikh razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 70–80 | MR | Zbl
[41] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Mat. sb., 181:2 (1990), 212–239 | MR | Zbl
[42] Aranson S. Kh., Belitsky G. R., Zhuzhoma E. V., Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[43] Asimov D., “Round handles and non-singular Morse–Smale flows”, Ann. Math. Ser. 2, 102 (1975), 41–54 | DOI | MR | Zbl
[44] Batterson S., “The dynamics of Morse–Smale diffeomorphisms on the torus”, Trans. Amer. Math. Soc., 256 (1979), 395–403 | DOI | MR | Zbl
[45] Batterson S., “Orientation-reversing Morse–Smale diffeomorphisms on the torus”, Trans. Amer. Math. Soc., 264 (1981), 29–37 | DOI | MR | Zbl
[46] Batterson S., Handel M., Narasimhan C., “Orientation reversing Morse–Smale diffeomorphisms of $S^2$”, Invent. math., 64 (1981), 345–356 | DOI | MR | Zbl
[47] Béguin F., Smale diffeomorphisms of surfaces: an algorithm for the conjugacy problem, Preprint, Univ. Bourgogne, Dijon, 1999
[48] Blanchard P., Franks J., “The dynamical complexity of orientation reversing homeomorphisms of surfaces”, Invent. math., 62 (1980), 333–339 | DOI | MR | Zbl
[49] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6 (2000), 579–602 | DOI | MR | Zbl
[50] Bonatti C., Grines V., Langevin R., “Dynamical systems in dimension 2 and 3: conjugacy invariants and classification”, Comput. and Appl. Math., 20 (2001), 11–50 | MR | Zbl
[51] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topol. and Appl., 117 (2002), 335–344 | DOI | MR | Zbl
[52] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43 (2004), 369–391 | DOI | MR | Zbl
[53] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Astérisque, 250, Soc. math. France, Paris, 1998 | MR | Zbl
[54] Bowen R., “Topological entropy and axiom A”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 23–41 | MR
[55] Bowen R., “Periodic points and measures for axiom A diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 337–397 | DOI | MR
[56] Cantrell J. C., Edwards C. H., “Almost locally polyhedral curves in Euclidean $n$-space”, Trans. Amer. Math. Soc., 107 (1963), 451–457 | DOI | MR | Zbl
[57] Fleitas G., “Classification of gradient-like flows in dimensions two and three”, Bol. Soc. Brasil. Mat., 6 (1975), 155–183 | DOI | MR | Zbl
[58] Fox R. H., Artin E., “Some wild cells and spheres in three-dimensional space”, Ann. Math. Ser. 2, 49 (1948), 979–990 | DOI | MR | Zbl
[59] Franks J. M., “Some smooth maps with infinitely many hyperbolic periodic points”, Trans. Amer. Math. Soc., 226 (1977), 175–179 | DOI | MR | Zbl
[60] Franks J. M., “The periodic structure of non-singular Morse–Smale flows”, Comment. Math. Helv., 53 (1978), 279–294 | DOI | MR | Zbl
[61] Franks J. M., Homology and dynamical systems, CBMS Reg. Conf. Ser. Math., 49, Amer. Math. Soc., Providence, RI, 1982 | MR
[62] Grines V., Medvedev V., Zhuzhoma E., “Global dynamics of Morse–Smale diffeomorphisms”, Differential equations and dynamical systems, Intern. Conf. (Suzdal, Russia, 10–15 June, 2006), Abstr., Vladimir State Univ., Vladimir, 2006, 264
[63] Gutierrez C., “Structural stability for flows on the torus with a cross-cap”, Trans. Amer. Math. Soc., 241 (1978), 311–320 | DOI | MR | Zbl
[64] Gutierrez C., de Melo W., “The connected components of Morse–Smale vector fields on two manifolds”, Geometry and topology, Lect. Notes Math., 597, Springer, Berlin, 1977, 230–251 | MR
[65] Handel M., “The entropy of orientation reversing homeomorphisms of surfaces”, Topology, 21 (1982), 291–296 | DOI | MR | Zbl
[66] Langevin R., “Quelques nouveaux invariants des difféomorphismes Morse–Smale d'une surface”, Ann. Inst. Fourier, 43 (1993), 265–278 | MR | Zbl
[67] Markley N. G., “The Poincaré–Bendixon theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl
[68] Morgan J. W., “Non-singular Morse–Smale flows on 3-dimensional manifolds”, Topology, 18 (1979), 41–53 | DOI | MR | Zbl
[69] Narasimhan C. C., “The periodic behavior of Morse–Smale diffeomorphisms on compact surfaces”, Trans. Amer. Math. Soc., 248 (1979), 145–169 | DOI | MR | Zbl
[70] Nikolaev I., “Graphs and flows on surfaces”, Ergod. Theory and Dyn. Syst., 18 (1998), 207–220 | DOI | MR | Zbl
[71] Nikolaev I., Zhuzhoma E., Flows on 2-dimensional manifolds, Lect. Notes Math., 1705, Springer, Berlin, 1999 | MR | Zbl
[72] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR
[73] Palis J., Smale S., “Structural stability theorems”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 | MR
[74] Peixoto M. M., “On structural stability”, Ann. Math. Ser. 2, 69 (1959), 199–222 | DOI | MR | Zbl
[75] Peixoto M. M., “Structural stability on two-dimensional manifolds”, Topology, 1 (1962), 101–120 | DOI | MR | Zbl
[76] Peixoto M. M., “Structural stability on two-dimensional manifolds. A further remark”, Topology, 2 (1963), 179–180 | DOI | MR | Zbl
[77] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador, Brazil, 1971), Acad. Press, New York–London, 1973, 389–419 | MR
[78] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl
[79] Plachta L., “Chord diagrams in the classification of Morse–Smale flows on 2-manifolds”, Knot theory, Banach Center Publ., 42, Pol. Acad. Sci., Inst. Math., Warsaw, 1998, 255–273 | MR | Zbl
[80] Plachta L., “The combinatorics of gradient-like flows and foliations on closed surfaces. I: Topological classification”, Topol. and Appl., 128 (2003), 63–91 | DOI | MR | Zbl
[81] Pochinka O., “On topological conjugacy of simplest Morse–Smale diffeomorphisms on $S^3$ with the finite number of heteroclinic orbits”, Progress in nonlinear scince, Proc. Intern. Conf. (Nizhni Novgorod, 2001), V. 1, Inst. Appl. Phys. RAS, Nizhni Novgorod, 2002, 338–345 | MR
[82] Sasano K., “Links of closed orbits of nonsingular Morse–Smale flows”, Proc. Amer. Math. Soc., 88 (1983), 727–734 | DOI | MR | Zbl
[83] Shub M., “Morse–Smale diffeomorphisms are unipotent on homology”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador, Brazil, 1971), Acad. Press, New York–London, 1973, 489–491 | MR
[84] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 14 (1975), 109–132 | DOI | MR | Zbl
[85] Smale S., “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[86] Smale S., “The generalized Poincaré conjecture in higher dimensions”, Bull. Amer. Math. Soc., 66 (1960), 373–375 | DOI | MR | Zbl
[87] Smale S., “On gradient dynamical systems”, Ann. Math. Ser. 2, 74 (1961), 199–206 | DOI | MR | Zbl
[88] Smale S., “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. Math. Ser. 2, 74 (1961), 391–406 | DOI | MR | Zbl
[89] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 ; Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | DOI | MR | MR
[90] Vlasenko I., “On the relations on the set of heteroclinic points of Morse–Smale diffeomorphisms on 2-manifolds”, Meth. Funct. Anal. and Topol., 5:3 (1999), 90–96 | MR | Zbl
[91] Wada M., “Closed orbits of non-singular Morse–Smale flows on $S^3$”, J. Math. Soc. Japan., 41 (1989), 405–413 | DOI | MR | Zbl
[92] Wang X., “The $C^*$-algebras of Morse–Smale flows on two-manifolds”, Ergod. Theory and Dyn. Syst., 10 (1990), 565–597 | MR | Zbl
[93] Yano K., “A note on non-singular Morse–Smale flows on $S^3$”, Proc. Japan Acad. A, 58 (1982), 447–450 | DOI | MR | Zbl